BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 12743758)

  • 1. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms.
    Abou-Zeid DM; Müller RJ; Deckwer WD
    Biomacromolecules; 2004; 5(5):1687-97. PubMed ID: 15360276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of microbial polyesters.
    Tokiwa Y; Calabia BP
    Biotechnol Lett; 2004 Aug; 26(15):1181-9. PubMed ID: 15289671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy of two thermophiles enables decomposition of poly-epsilon-caprolactone under composting conditions.
    Nakasaki K; Matsuura H; Tanaka H; Sakai T
    FEMS Microbiol Ecol; 2006 Dec; 58(3):373-83. PubMed ID: 17117982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aliphatic polyesters: great degradable polymers that cannot do everything.
    Vert M
    Biomacromolecules; 2005; 6(2):538-46. PubMed ID: 15762610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of polyesters containing aromatic constituents.
    Müller RJ; Kleeberg I; Deckwer WD
    J Biotechnol; 2001 Mar; 86(2):87-95. PubMed ID: 11245897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal survival during anaerobic digestion of organic household waste.
    Schnürer A; Schnürer J
    Waste Manag; 2006; 26(11):1205-11. PubMed ID: 16293407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living in a fungal world: impact of fungi on soil bacterial niche development.
    Boer Wd; Folman LB; Summerbell RC; Boddy L
    FEMS Microbiol Rev; 2005 Sep; 29(4):795-811. PubMed ID: 16102603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.
    Álvarez-Barragán J; Domínguez-Malfavón L; Vargas-Suárez M; González-Hernández R; Aguilar-Osorio G; Loza-Tavera H
    Appl Environ Microbiol; 2016 Sep; 82(17):5225-35. PubMed ID: 27316963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters.
    Chen Y; Jia Z; Schaper A; Kristiansen M; Smith P; Wombacher R; Wendorff JH; Greiner A
    Biomacromolecules; 2004; 5(1):11-6. PubMed ID: 14715002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone).
    Cho H; An J
    Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
    Lenz RW; Marchessault RH
    Biomacromolecules; 2005; 6(1):1-8. PubMed ID: 15638495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(3-mercaptopropionate): a nonbiodegradable biopolymer?
    Kim DY; Lütke-Eversloh T; Elbanna K; Thakor N; Steinbüchel A
    Biomacromolecules; 2005; 6(2):897-901. PubMed ID: 15762657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    N Biotechnol; 2016 Mar; 33(2):295-304. PubMed ID: 26594021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal communities associated with degradation of polyester polyurethane in soil.
    Cosgrove L; McGeechan PL; Robson GD; Handley PS
    Appl Environ Microbiol; 2007 Sep; 73(18):5817-24. PubMed ID: 17660302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of synthetic polymers in soils: Tracking carbon into CO
    Zumstein MT; Schintlmeister A; Nelson TF; Baumgartner R; Woebken D; Wagner M; Kohler HE; McNeill K; Sander M
    Sci Adv; 2018 Jul; 4(7):eaas9024. PubMed ID: 30050987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation of microbial ecology in hemlock soil of Tatachia Mountain, Taiwan.
    Yang SS; Tsai SH; Fan HY; Yang CK; Hung WL; Cho ST
    J Microbiol Immunol Infect; 2006 Jun; 39(3):195-205. PubMed ID: 16783449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.