These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 12744074)

  • 61. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unprecedented Biodegradable Cellulose-Derived Polyesters with Pendant Citronellol Moieties: From Monomer Synthesis to Enzymatic Degradation.
    Kayishaer A; Fadlallah S; Mouterde LMM; Peru AAM; Werghi Y; Brunois F; Carboué Q; Lopez M; Allais F
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946753
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.
    Suresh Kumar M; Mudliar SN; Reddy KM; Chakrabarti T
    Bioresour Technol; 2004 Dec; 95(3):327-30. PubMed ID: 15288276
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New perspectives in plastic biodegradation.
    Sivan A
    Curr Opin Biotechnol; 2011 Jun; 22(3):422-6. PubMed ID: 21356588
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Environmental performance of bio-based and biodegradable plastics: the road ahead.
    Lambert S; Wagner M
    Chem Soc Rev; 2017 Nov; 46(22):6855-6871. PubMed ID: 28932844
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production and waste treatment of polyesters: application of bioresources and biotechniques.
    Wang Y; Huang J; Liang X; Wei M; Liang F; Feng D; Xu C; Xian M; Zou H
    Crit Rev Biotechnol; 2023 Jun; 43(4):503-520. PubMed ID: 35430940
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Programmed-life plastics from polyolefins: a new look at sustainability.
    Scott G; Wiles DM
    Biomacromolecules; 2001; 2(3):615-22. PubMed ID: 11710012
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New insights into polylactide biodegradation from molecular ecological techniques.
    Sangwan P; Wu DY
    Macromol Biosci; 2008 Apr; 8(4):304-15. PubMed ID: 18383571
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates.
    Albuquerque PBS; Malafaia CB
    Int J Biol Macromol; 2018 Feb; 107(Pt A):615-625. PubMed ID: 28916381
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: A microcosm study.
    Meng K; Teng Y; Ren W; Wang B; Geissen V
    Sci Total Environ; 2023 Mar; 865():161207. PubMed ID: 36581270
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Materials derived from biomass/biodegradable materials.
    Luzier WD
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):839-42. PubMed ID: 1736301
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent advances in biodegradable nanocomposites.
    Pandey JK; Kumar AP; Misra M; Mohanty AK; Drzal LT; Singh RP
    J Nanosci Nanotechnol; 2005 Apr; 5(4):497-526. PubMed ID: 16004113
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bacterial and other biological systems for polyester production.
    Steinbüchel A; Füchtenbusch B
    Trends Biotechnol; 1998 Oct; 16(10):419-27. PubMed ID: 9807839
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Current status of bio-based materials industry in China].
    Diao X; Weng Y; Huang Z; Yang N; Wang X; Zhang M; Jin Y
    Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):715-725. PubMed ID: 29019181
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry.
    Castillo C; Nesic A; Urra N; Maldonado A
    Int J Biol Macromol; 2019 Feb; 122():924-929. PubMed ID: 30412758
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biodegradable polyesters from renewable resources.
    Tsui A; Wright ZC; Frank CW
    Annu Rev Chem Biomol Eng; 2013; 4():143-70. PubMed ID: 23540287
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanoparticles--production and role in biotransformation.
    Mohapatra DP; Gassara F; Brar SK
    J Nanosci Nanotechnol; 2011 Feb; 11(2):899-918. PubMed ID: 21456120
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters.
    Brandl H; Gross RA; Lenz RW; Fuller RC
    Adv Biochem Eng Biotechnol; 1990; 41():77-93. PubMed ID: 2126418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.