These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 12744371)
21. An experimental study to determine and correlate choline acetyltransferase assay with functional muscle testing after nerve injury. Vathana T; Nijhuis TH; Friedrich PF; Bishop AT; Shin AY J Neurosurg; 2014 May; 120(5):1125-30. PubMed ID: 24559224 [TBL] [Abstract][Full Text] [Related]
22. Differential regulation of motor neuron survival and choline acetyltransferase expression following axotomy. Kou SY; Chiu AY; Patterson PH J Neurobiol; 1995 Aug; 27(4):561-72. PubMed ID: 7561834 [TBL] [Abstract][Full Text] [Related]
23. Recovery from paralysis in adult rats using embryonic stem cells. Deshpande DM; Kim YS; Martinez T; Carmen J; Dike S; Shats I; Rubin LL; Drummond J; Krishnan C; Hoke A; Maragakis N; Shefner J; Rothstein JD; Kerr DA Ann Neurol; 2006 Jul; 60(1):32-44. PubMed ID: 16802299 [TBL] [Abstract][Full Text] [Related]
24. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. Soundararajan P; Miles GB; Rubin LL; Brownstone RM; Rafuse VF J Neurosci; 2006 Mar; 26(12):3256-68. PubMed ID: 16554476 [TBL] [Abstract][Full Text] [Related]
25. Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration. Wright MC; Mi R; Connor E; Reed N; Vyas A; Alspalter M; Coppola G; Geschwind DH; Brushart TM; Höke A J Neurosci; 2014 Jan; 34(5):1689-700. PubMed ID: 24478351 [TBL] [Abstract][Full Text] [Related]
26. Assessment of the rate of spinal motor axon regeneration by choline acetyltransferase immunohistochemistry following sciatic nerve crush injury in mice. Yuan Q; Su H; Chiu K; Lin ZX; Wu W J Neurosurg; 2014 Feb; 120(2):502-8. PubMed ID: 24032704 [TBL] [Abstract][Full Text] [Related]
27. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Cui L; Jiang J; Wei L; Zhou X; Fraser JL; Snider BJ; Yu SP Stem Cells; 2008 May; 26(5):1356-65. PubMed ID: 18308951 [TBL] [Abstract][Full Text] [Related]
28. Transplantation of bone marrow stromal cell-derived neural precursor cells ameliorates deficits in a rat model of complete spinal cord transection. Aizawa-Kohama M; Endo T; Kitada M; Wakao S; Sumiyoshi A; Matsuse D; Kuroda Y; Morita T; Riera JJ; Kawashima R; Tominaga T; Dezawa M Cell Transplant; 2013; 22(9):1613-25. PubMed ID: 23127893 [TBL] [Abstract][Full Text] [Related]
29. Motoneuron replacement for reinnervation of skeletal muscle in adult rats. Grumbles RM; Almeida VW; Casella GT; Wood PM; Hemstapat K; Thomas CK J Neuropathol Exp Neurol; 2012 Oct; 71(10):921-30. PubMed ID: 22964786 [TBL] [Abstract][Full Text] [Related]
30. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Lowry N; Goderie SK; Adamo M; Lederman P; Charniga C; Gill J; Silver J; Temple S Exp Neurol; 2008 Feb; 209(2):510-22. PubMed ID: 18029281 [TBL] [Abstract][Full Text] [Related]
31. Cholinergic neuron-like cells derived from bone marrow stromal cells induced by tricyclodecane-9-yl-xanthogenate promote functional recovery and neural protection after spinal cord injury. Sun C; Shao J; Su L; Zhao J; Bi J; Yang S; Zhang S; Gao J; Miao J Cell Transplant; 2013; 22(6):961-75. PubMed ID: 23031841 [TBL] [Abstract][Full Text] [Related]
32. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Kalyani A; Hobson K; Rao MS Dev Biol; 1997 Jun; 186(2):202-23. PubMed ID: 9205140 [TBL] [Abstract][Full Text] [Related]
33. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Corti S; Locatelli F; Papadimitriou D; Del Bo R; Nizzardo M; Nardini M; Donadoni C; Salani S; Fortunato F; Strazzer S; Bresolin N; Comi GP Brain; 2007 May; 130(Pt 5):1289-305. PubMed ID: 17439986 [TBL] [Abstract][Full Text] [Related]
34. Transplanting neural progenitors into a complete transection model of spinal cord injury. Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691 [TBL] [Abstract][Full Text] [Related]
35. A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Thaler JP; Koo SJ; Kania A; Lettieri K; Andrews S; Cox C; Jessell TM; Pfaff SL Neuron; 2004 Feb; 41(3):337-50. PubMed ID: 14766174 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the LIM-type homeobox gene islet-1 during neuronal regeneration. Hol EM; Schwaiger FW; Werner A; Schmitt A; Raivich G; Kreutzberg GW Neuroscience; 1999; 88(3):917-25. PubMed ID: 10363827 [TBL] [Abstract][Full Text] [Related]
37. Progressive morphological abnormalities observed in rat spinal motor neurons at extended intervals after axonal regeneration. Bowe CM; Evans NH; Vlacha V J Comp Neurol; 1992 Jul; 321(4):576-90. PubMed ID: 1380520 [TBL] [Abstract][Full Text] [Related]
38. Comparative study of gene expression of cholinergic system-related molecules in the human spinal cord and term placenta. Oda Y; Muroishi Y; Misawa H; Suzuki S Neuroscience; 2004; 128(1):39-49. PubMed ID: 15450352 [TBL] [Abstract][Full Text] [Related]
39. Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis. Hemendinger R; Wang J; Malik S; Persinski R; Copeland J; Emerich D; Gores P; Halberstadt C; Rosenfeld J Exp Neurol; 2005 Dec; 196(2):235-43. PubMed ID: 16242126 [TBL] [Abstract][Full Text] [Related]
40. Transplantation of embryonic neurones to replace missing spinal motoneurones. Nógrádi A; Szabó A Restor Neurol Neurosci; 2008; 26(2-3):215-23. PubMed ID: 18820412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]