These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Elastic contact conditions to optimize friction drive of surface acoustic wave motor. Kuribayashi Kurosawa M; Takahashi M; Higuchi T IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1229-37. PubMed ID: 18244284 [TBL] [Abstract][Full Text] [Related]
3. Friction drive of an SAW Motor. Part I: measurements. Shigematsu T; Kurosawa MK IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2005-15. PubMed ID: 18986896 [TBL] [Abstract][Full Text] [Related]
4. A standing wave-type noncontact linear ultrasonic motor. Hu J; Li G; Chan HL; Choy CL IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):699-708. PubMed ID: 11381693 [TBL] [Abstract][Full Text] [Related]
5. A standing wave ultrasonic stepping motor using open-loop control system. Dong X; Hu M; Jin L; Xu Z; Jiang C Ultrasonics; 2018 Jan; 82():327-330. PubMed ID: 28964961 [TBL] [Abstract][Full Text] [Related]
7. Simulation of surface acoustic wave motor with spherical slider. Morita T; Kurosawa MK; Higuchi T IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):929-34. PubMed ID: 18238497 [TBL] [Abstract][Full Text] [Related]
8. State-of-the-art surface acoustic wave linear motor and its future applications. Kurosawa MK Ultrasonics; 2000 Mar; 38(1-8):15-9. PubMed ID: 10829620 [TBL] [Abstract][Full Text] [Related]
9. A traveling-wave, modified ring linear piezoelectric microactuator with enclosed piezoelectric elements--the "scream" actuator. Friend J; Nakamura K; Ueha S IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Aug; 52(8):1343-53. PubMed ID: 16245603 [TBL] [Abstract][Full Text] [Related]
10. Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor. Ting Y; Yu CH; Lin JH; Johar T; Wang CW IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2815-2823. PubMed ID: 33900912 [TBL] [Abstract][Full Text] [Related]
11. Optimum contact conditions for miniaturized surface acoustic wave linear motor. Takasaki M; Kurosawa MK; Higuchi T Ultrasonics; 2000 Mar; 38(1-8):51-3. PubMed ID: 10829627 [TBL] [Abstract][Full Text] [Related]
12. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage. Koyama D; Takei H; Nakamura K; Ueha S IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1823-30. PubMed ID: 18986924 [TBL] [Abstract][Full Text] [Related]
13. Theoretical analysis and experimental investigation on a linear ultrasonic motor with a compact slider. Dai S; Yao Z; Zhou L; He Y Rev Sci Instrum; 2020 Dec; 91(12):125002. PubMed ID: 33379992 [TBL] [Abstract][Full Text] [Related]
15. A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range. Judy JW; Polla DL; Robbins WP IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):428-37. PubMed ID: 18285060 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the squeeze film effect in a surface acoustic wave motor. Asai K; Kurosawa MK IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1722-34. PubMed ID: 16382623 [TBL] [Abstract][Full Text] [Related]
17. Friction drive of an SAW motor. Part II: analyses. Shigematsu T; Kurosawa MK IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2016-24. PubMed ID: 18986897 [TBL] [Abstract][Full Text] [Related]
18. Whispering-gallery acoustic sensing: characterization of mesoscopic films and scanning probe microscopy applications. La Rosa AH; Li N; Fernandez R; Wang X; Nordstrom R; Padigi SK Rev Sci Instrum; 2011 Sep; 82(9):093704. PubMed ID: 21974591 [TBL] [Abstract][Full Text] [Related]