These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12744397)

  • 1. Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz.
    Fournier C; Bridal SL; Coron A; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):408-18. PubMed ID: 12744397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo high-frequency ultrasonic characterization of human dermis.
    Guittet C; Ossant F; Vaillant L; Berson M
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):740-6. PubMed ID: 10356880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of trabecular bone using the backscattered spectral centroid shift.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):402-7. PubMed ID: 12744396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency estimation of the ultrasonic attenuation coefficient slope obtained in human skin: simulation and in vivo results.
    Guittet C; Ossant F; Remenieras JP; Pourcelot L; Berson M
    Ultrasound Med Biol; 1999 Mar; 25(3):421-9. PubMed ID: 10374985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing radio frequency ultrasound images: a robust method for local spectral features estimation by a spatially constrained parametric approach.
    Gorce JM; Friboulet D; Dydenko I; D'hooge J; Bijnens BH; Magnin IE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1704-19. PubMed ID: 12546150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic backscatter and attenuation (11-27 MHz) variation with collagen fiber distribution in ex vivo human dermis.
    Bridal SL; Fournier C; Coron A; Leguerney I; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):23-40. PubMed ID: 16924880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of the spectral centroid downshift method for attenuation estimation.
    Samimi K; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):871-80. PubMed ID: 25965681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of skin characterization with backscattered spectra (12--25 MHz) in healthy subjects.
    Fournier C; Bridal SL; Berger G; Laugier P
    Ultrasound Med Biol; 2001 May; 27(5):603-10. PubMed ID: 11397524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the spectral fit algorithm as functions of frequency range and deltakaeff.
    Bigelow TA; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2003-10. PubMed ID: 16422412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scatterer number density considerations in reference phantom-based attenuation estimation.
    Rubert N; Varghese T
    Ultrasound Med Biol; 2014 Jul; 40(7):1680-96. PubMed ID: 24726800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections.
    Zheng R; Le LH; Sacchi MD; Ta D; Lou E
    Phys Med Biol; 2007 Oct; 52(19):5855-69. PubMed ID: 17881804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of measurement of skin ultrasonic properties in vivo: a potential technique for assessing irradiated skin.
    Huang YP; Zheng YP; Leung SF; Mak AF
    Skin Res Technol; 2007 Feb; 13(1):55-61. PubMed ID: 17250533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro classification of gallstones by quantitative echography.
    Goedegebure A; van der Steen AF; Thijssen JM
    Ultrasound Med Biol; 1992; 18(6-7):553-68. PubMed ID: 1413267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets.
    Wan S; Raju BI; Srinivasan MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1286-95. PubMed ID: 14609068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multielement synthetic transmit aperture imaging using temporal encoding.
    Gammelmark KL; Jensen JA
    IEEE Trans Med Imaging; 2003 Apr; 22(4):552-63. PubMed ID: 12774901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normalization and backscatter spectral analysis of human carotid arterial data acquired using a clinical linear array ultrasound imaging system.
    Sareen M; Waters K; Nair A; Vince DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2968-71. PubMed ID: 19163329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variation of acoustic parameters in human skin: an in vitro study between 22 and 45 MHz.
    Lebertre M; Ossant F; Vaillant L; Diridollou S; Patat F
    Ultrasound Med Biol; 2002 May; 28(5):599-615. PubMed ID: 12079697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-ensemble-based eigen-processing methods for color flow imaging--Part II. The matrix pencil estimator.
    Yu AC; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):573-87. PubMed ID: 18407848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation estimations using envelope echo data: analysis and simulations.
    Tu H; Zagzebski J; Chen Q
    Ultrasound Med Biol; 2006 Mar; 32(3):377-86. PubMed ID: 16530096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
    Oralkan O; Ergun AS; Johnson JA; Karaman M; Demirci U; Kaviani K; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1596-610. PubMed ID: 12484483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.