BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12745)

  • 1. The role of glucocorticoids in the regulation of the diurnal rhythm of hepatic beta-hydroxy-beta-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase.
    Mitropoulos KA; Balasubramaniam S
    Biochem J; 1976 Oct; 160(1):49-55. PubMed ID: 12745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex-related differences in diurnal activities and development of hepatic microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7alpha-hydroxylase.
    Carlson SE; Mitchell AD; Goldfarb S
    Biochim Biophys Acta; 1978 Oct; 531(1):115-24. PubMed ID: 568487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The circadian rhythm of synthesis and catabolism of cholesterol.
    Mayer D
    Arch Toxicol; 1976 Dec; 36(3-4):267-76. PubMed ID: 1036900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism for the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, of cholesterol 7alpha-hydroxylase and of acyl-coenzyme A:cholesterol acyltransferase by free cholesterol.
    Mitropoulos KA; Balasubramaniam S; Venkatesan S; Reeves BE
    Biochim Biophys Acta; 1978 Jul; 530(1):99-111. PubMed ID: 687657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short- and long-term effects of ethanol administration in vivo on rat liver HMG-CoA reductase and cholesterol 7alpha-hydroxylase activities.
    Lakshmanan MR; Veech RL
    J Lipid Res; 1977 May; 18(3):325-30. PubMed ID: 864324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of regulation of microsomal hydroxymethylglutaryl coenzyme A reductase and methyl sterol oxidase of cholesterol biosynthesis.
    Spence JT; Gaylor JL
    J Biol Chem; 1977 Aug; 252(16):5852-8. PubMed ID: 560376
    [No Abstract]   [Full Text] [Related]  

  • 7. In vivo and in vitro studies on the regulatory link between 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in rat liver.
    Boll M; Weber LW; Plana J; Stampfl A
    Z Naturforsch C J Biosci; 1999; 54(5-6):371-82. PubMed ID: 10431389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholestyramine on cholesterol balance parameters and hepatic HMG-CoA reductase and cholesterol-7-alpha-hydroxylase activities in swine.
    Kim DN; Rogers DH; Li JR; Reiner JM; Lee KT; Thomas WA
    Exp Mol Pathol; 1977 Jun; 26(3):434-7. PubMed ID: 862828
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7alpha-hydroxylase in the rat.
    Shefer S; Hauser S; Lapar V; Mosbach EH
    J Lipid Res; 1973 Sep; 14(5):573-80. PubMed ID: 4729973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of bile acid synthesis. II. Effect of bile acid feeding on enzymes regulating hepatic cholesterol and bile acid synthesis in the rat.
    Heuman DM; Vlahcevic ZR; Bailey ML; Hylemon PB
    Hepatology; 1988; 8(4):892-7. PubMed ID: 3391517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal developmental profile of 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthetase and cholesterol 7 alpha-hydroxylase activities in the liver of domestic swine.
    Kwekkeboom J; Kempen HJ; van Voorthuizen EM; Griffioen M; Cohen LH
    Biochim Biophys Acta; 1990 Jan; 1042(1):146-9. PubMed ID: 2297519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of portacaval anastomosis on the activities of hepatic enzymes related to cholesterol and bile acid metabolism in rats.
    Balasubramaniam S; Press CM; Mitropoulos KA; Magide AA; Myant NB
    Biochim Biophys Acta; 1976 Aug; 441(2):308-15. PubMed ID: 8128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of catecholamines on the hepatic rate-limiting enzymes of cholesterol metabolism in normally fed and cholesterol-fed rabbits.
    Deverey R; O'Donnell L; Tomkin GH
    Biochim Biophys Acta; 1986 Jul; 887(2):173-81. PubMed ID: 3719008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities.
    Balasubramaniam S; Goldstein JL; Brown MS
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1421-5. PubMed ID: 16260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the structural specificity in the regulation of the hydroxymethylglutaryl-CoA reductase and the cholesterol-7 alpha-hydroxylase in rats. Effects of cholestanol feeding.
    Björkhem I; Buchmann MS; Skrede S
    Biochim Biophys Acta; 1985 Jun; 835(1):18-22. PubMed ID: 3924107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol 7 alpha-hydroxylase activity in neonatal guinea pig.
    Li JR; Subbiah MT; Kottke BA
    Steroids; 1979 Jul; 34(1):47-55. PubMed ID: 483335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in mechanisms of modulation between rat liver cholesterol 7 alpha-hydroxylase and HMG-CoA reductase.
    Lidström-Olsson B
    FEBS Lett; 1985 Sep; 189(1):124-8. PubMed ID: 2993028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth hormone and bile acid synthesis. Key role for the activity of hepatic microsomal cholesterol 7alpha-hydroxylase in the rat.
    Rudling M; Parini P; Angelin B
    J Clin Invest; 1997 May; 99(9):2239-45. PubMed ID: 9151797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of increased hepatic sitosterol on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase in the rat and sitosterolemic homozygotes.
    Shefer S; Salen G; Bullock J; Nguyen LB; Ness GC; Vhao Z; Belamarich PF; Chowdhary I; Lerner S; Batta AK
    Hepatology; 1994 Jul; 20(1 Pt 1):213-9. PubMed ID: 8020891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cortisol or corticotropin administration on hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and plasma lipids in the pregnant rat and fetuses.
    Innis SM; Haave NC
    J Dev Physiol; 1989 Jun; 11(6):346-50. PubMed ID: 2556470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.