These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12745077)

  • 1. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
    Masso M; Vaisman II
    Biochem Biophys Res Commun; 2003 May; 305(2):322-6. PubMed ID: 12745077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitor binding to the Phe53Trp mutant of HIV-1 protease promotes conformational changes detectable by spectrofluorometry.
    Rodríguez EJ; Debouck C; Deckman IC; Abu-Soud H; Raushel FM; Meek TD
    Biochemistry; 1993 Apr; 32(14):3557-63. PubMed ID: 8466899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational mutagenesis studies of protein structure-function correlations.
    Masso M; Lu Z; Vaisman II
    Proteins; 2006 Jul; 64(1):234-45. PubMed ID: 16617425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease.
    Todd MJ; Freire E
    Proteins; 1999 Aug; 36(2):147-56. PubMed ID: 10398363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors.
    Noel AF; Bilsel O; Kundu A; Wu Y; Zitzewitz JA; Matthews CR
    J Mol Biol; 2009 Apr; 387(4):1002-16. PubMed ID: 19150359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W; Kollman PA
    J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease.
    Zondagh J; Balakrishnan V; Achilonu I; Dirr HW; Sayed Y
    J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor.
    Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW
    Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining mutations in HIV-1 protease to understand mechanisms of resistance.
    Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT
    Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface.
    Bannwarth L; Reboud-Ravaux M
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):551-4. PubMed ID: 17511649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L; Wenger T; Schramm HJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):484-8. PubMed ID: 8967903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations.
    Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG
    Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.