These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 12745426)

  • 1. Three-dimensional trabecular alignment model.
    Bono ES; Smolinski P; Casagranda A; Xu J
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):125-31. PubMed ID: 12745426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3-dimensional computer model to simulate trabecular bone metabolism.
    Ruimerman R; Van Rietbergen B; Hilbers P; Huiskes R
    Biorheology; 2003; 40(1-3):315-20. PubMed ID: 12454421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface remodeling of trabecular bone using a tissue level model.
    Smith TS; Martin RB; Hubbard M; Bay BK
    J Orthop Res; 1997 Jul; 15(4):593-600. PubMed ID: 9379270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic 3-dimensional system to mimic trabecular bone surface adaptation.
    Nowak M
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):313-7. PubMed ID: 17132617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for the regulatory mechanism of Wolff's law.
    Mullender MG; Huiskes R
    J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
    Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD
    Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model for simulating the bone remodeling process under mechanical stimulus.
    Li J; Li H; Shi L; Fok AS; Ucer C; Devlin H; Horner K; Silikas N
    Dent Mater; 2007 Sep; 23(9):1073-8. PubMed ID: 17137621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trabecular bone remodeling phenomenon as a pattern for structural optimization.
    Nowak M
    Stud Health Technol Inform; 2008; 133():196-200. PubMed ID: 18376027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone.
    Chen JH; Liu C; You L; Simmons CA
    J Biomech; 2010 Jan; 43(1):108-18. PubMed ID: 19818443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system.
    Tezuka K; Wada Y; Takahashi A; Kikuchi M
    J Bone Miner Metab; 2005; 23(1):1-7. PubMed ID: 15616887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.