These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12745432)

  • 1. Constitutive laws and failure models for compact bones subjected to dynamic loading.
    Pithioux M; Chabrand P; Jean M
    Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):351-9. PubMed ID: 12745432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting fracture of the femoral neck.
    Stepanskiy L; Seliktar RR
    J Biomech; 2007; 40(8):1813-23. PubMed ID: 17046773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading.
    Cheung G; Zalzal P; Bhandari M; Spelt JK; Papini M
    Med Eng Phys; 2004 Mar; 26(2):93-108. PubMed ID: 15036177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization.
    Cherraf-Schweyer C; Maurice G; Taghite M; Taous K
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):195-207. PubMed ID: 17558648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramedullary femoral nails: one or two lag screws? A preliminary study.
    Paul JP
    Med Eng Phys; 2004 May; 26(4):359; author reply 360. PubMed ID: 15121063
    [No Abstract]   [Full Text] [Related]  

  • 13. A comparative analysis of different treatments for distal femur fractures using the finite element method.
    Cegoñino J; García Aznar JM; Doblaré M; Palanca D; Seral B; Seral F
    Comput Methods Biomech Biomed Engin; 2004 Oct; 7(5):245-56. PubMed ID: 15621647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexural and creep properties of human jaw compact bone for FEA studies.
    Vitins V; Dobelis M; Middleton J; Limbert G; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stress ratio on the fatigue behaviour of compact bone.
    Ota M; Ishihara S; Fleck C; Goshima T; Eifler D
    Proc Inst Mech Eng H; 2005; 219(1):13-22. PubMed ID: 15777053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN; Pavan PG; Carniel EL; Dorow C
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone-cement interfacial behaviour under mixed mode loading conditions.
    Wang JY; Tozzi G; Chen J; Contal F; Lupton C; Tong J
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):392-8. PubMed ID: 20416553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a finite element model of the human metacarpal.
    Barker DS; Netherway DJ; Krishnan J; Hearn TC
    Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.