These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12745844)

  • 1. Individual stopping times and cognitive control: converging evidence for the stop signal task from a continuous tracking paradigm.
    Morein-Zamir S; Meiran N
    Q J Exp Psychol A; 2003 Apr; 56(3):469-89. PubMed ID: 12745844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stop signal modality, stop signal intensity and tracking method on inhibitory performance as determined by use of the stop signal paradigm.
    van der Schoot M; Licht R; Horsley TM; Sergeant JA
    Scand J Psychol; 2005 Aug; 46(4):331-41. PubMed ID: 16014077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm.
    Ramautar JR; Kok A; Ridderinkhof KR
    Biol Psychol; 2006 Apr; 72(1):96-109. PubMed ID: 16157441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental trends in simple and selective inhibition of compatible and incompatible responses.
    van den Wildenberg WP; van der Molen MW
    J Exp Child Psychol; 2004 Mar; 87(3):201-20. PubMed ID: 14972598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory MEG responses predict successful and failed inhibition in a stop-signal task.
    Boehler CN; Münte TF; Krebs RM; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2009 Jan; 19(1):134-45. PubMed ID: 18440947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between stop signal inhibition and distractor interference in the flanker and Stroop task.
    Verbruggen F; Liefooghe B; Vandierendonck A
    Acta Psychol (Amst); 2004 May; 116(1):21-37. PubMed ID: 15111228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stopping and restarting an unfolding action at various times.
    McGarry T; Chua R; Franks IM
    Q J Exp Psychol A; 2003 May; 56(4):601-20. PubMed ID: 12745832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility effects in stopping and response initiation in a continuous tracking task.
    Morein-Zamir S; Nagelkerke P; Chua R; Franks I; Kingstone A
    Q J Exp Psychol (Hove); 2006 Dec; 59(12):2148-61. PubMed ID: 17095493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-stop-signal adjustments: inhibition improves subsequent inhibition.
    Bissett PG; Logan GD
    J Exp Psychol Learn Mem Cogn; 2012 Jul; 38(4):955-66. PubMed ID: 22268912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocognitive performance during acute THC intoxication in heavy and occasional cannabis users.
    Ramaekers JG; Kauert G; Theunissen EL; Toennes SW; Moeller MR
    J Psychopharmacol; 2009 May; 23(3):266-77. PubMed ID: 18719045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-visual spatial tasks reveal increased interactions with stance postural control.
    Woollacott M; Vander Velde T
    Brain Res; 2008 May; 1208():95-102. PubMed ID: 18394592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redundancy gain in the stop-signal paradigm: implications for the locus of coactivation in simple reaction time.
    Cavina-Pratesi C; Bricolo E; Prior M; Marzi CA
    J Exp Psychol Hum Percept Perform; 2001 Aug; 27(4):932-41. PubMed ID: 11518154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of strongly focused visual attention on the detection of change in an auditory pattern.
    Sculthorpe LD; Collin CA; Campbell KB
    Brain Res; 2008 Oct; 1234():78-86. PubMed ID: 18674520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term aftereffects of response inhibition: memory retrieval, task goals, and cognitive control.
    Verbruggen F; Logan GD
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1229-35. PubMed ID: 18823207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms underlying trait impulsivity in non-clinical adults: stop-signal performance and event-related potentials.
    Dimoska A; Johnstone SJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2007 Mar; 31(2):443-54. PubMed ID: 17175083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.