These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 12746232)
1. YM-53601, a novel squalene synthase inhibitor, suppresses lipogenic biosynthesis and lipid secretion in rodents. Ugawa T; Kakuta H; Moritani H; Inagaki O; Shikama H Br J Pharmacol; 2003 May; 139(1):140-6. PubMed ID: 12746232 [TBL] [Abstract][Full Text] [Related]
2. Effect of YM-53601, a novel squalene synthase inhibitor, on the clearance rate of plasma LDL and VLDL in hamsters. Ugawa T; Kakuta H; Moritani H; Inagaki O Br J Pharmacol; 2002 Oct; 137(4):561-9. PubMed ID: 12359639 [TBL] [Abstract][Full Text] [Related]
3. YM-53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Ugawa T; Kakuta H; Moritani H; Matsuda K; Ishihara T; Yamaguchi M; Naganuma S; Iizumi Y; Shikama H Br J Pharmacol; 2000 Sep; 131(1):63-70. PubMed ID: 10960070 [TBL] [Abstract][Full Text] [Related]
4. Experimental model of escape phenomenon in hamsters and the effectiveness of YM-53601 in the model. Ugawa T; Kakuta H; Moritani H; Shikama H Br J Pharmacol; 2002 Mar; 135(6):1572-8. PubMed ID: 11906972 [TBL] [Abstract][Full Text] [Related]
5. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. Amin D; Rutledge RZ; Needle SN; Galczenski HF; Neuenschwander K; Scotese AC; Maguire MP; Bush RC; Hele DJ; Bilder GE; Perrone MH J Pharmacol Exp Ther; 1997 May; 281(2):746-52. PubMed ID: 9152381 [TBL] [Abstract][Full Text] [Related]
6. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro. Nishimoto T; Amano Y; Tozawa R; Ishikawa E; Imura Y; Yukimasa H; Sugiyama Y Br J Pharmacol; 2003 Jul; 139(5):911-8. PubMed ID: 12839864 [TBL] [Abstract][Full Text] [Related]
7. A high-cholesterol, n-3 polyunsaturated fatty acid diet causes different responses in rats and hamsters. Lin MH; Lu SC; Huang PC; Liu YC; Liu SY Ann Nutr Metab; 2005; 49(6):386-91. PubMed ID: 16219990 [TBL] [Abstract][Full Text] [Related]
8. Syntheses of 3-ethylidenequinuclidine derivatives as squalene synthase inhibitors. Part 2: enzyme inhibition and effects on plasma lipid levels. Ishihara T; Kakuta H; Moritani H; Ugawa T; Sakamoto S; Tsukamoto Si; Yanagisawa I Bioorg Med Chem; 2003 Aug; 11(17):3735-45. PubMed ID: 12901918 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and biological evaluation of quinuclidine derivatives incorporating phenothiazine moieties as squalene synthase inhibitors. Ishihara T; Kakuta H; Moritani H; Ugawa T; Yanagisawa I Chem Pharm Bull (Tokyo); 2004 Oct; 52(10):1204-9. PubMed ID: 15467236 [TBL] [Abstract][Full Text] [Related]
10. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. Llacuna L; Fernández A; Montfort CV; Matías N; Martínez L; Caballero F; Rimola A; Elena M; Morales A; Fernández-Checa JC; García-Ruiz C J Hepatol; 2011 May; 54(5):1002-10. PubMed ID: 21145825 [TBL] [Abstract][Full Text] [Related]
11. Effect of the hypocholesterolemic agent YM-16638 on cholesterol biosynthesis activity and apolipoprotein B secretion in HepG2 and monkey liver. Goto S; Shimokawa T Jpn J Pharmacol; 1999 Jan; 79(1):75-82. PubMed ID: 10082320 [TBL] [Abstract][Full Text] [Related]
12. Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo. Ciosek CP; Magnin DR; Harrity TW; Logan JV; Dickson JK; Gordon EM; Hamilton KA; Jolibois KG; Kunselman LK; Lawrence RM J Biol Chem; 1993 Nov; 268(33):24832-7. PubMed ID: 8227045 [TBL] [Abstract][Full Text] [Related]
13. Multiple mechanisms of hypocholesterolemic action of pactimibe, a novel acyl-coenzyme A:cholesterol acyltransferase inhibitor. Kitayama K; Koga T; Inaba T; Fujioka T Eur J Pharmacol; 2006 Aug; 543(1-3):123-32. PubMed ID: 16814766 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and biological evaluation of novel propylamine derivatives as orally active squalene synthase inhibitors. Ishihara T; Kakuta H; Moritani H; Ugawa T; Yanagisawa I Bioorg Med Chem; 2004 Nov; 12(22):5899-908. PubMed ID: 15498666 [TBL] [Abstract][Full Text] [Related]
15. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. Stanely Mainzen Prince P; Kannan NK J Pharm Pharmacol; 2006 Oct; 58(10):1373-83. PubMed ID: 17034661 [TBL] [Abstract][Full Text] [Related]
16. Sex steroid influence on triglyceride metabolism. Kim HJ; Kalkhoff RK J Clin Invest; 1975 Oct; 56(4):888-96. PubMed ID: 1159092 [TBL] [Abstract][Full Text] [Related]
17. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. van Heek M; Farley C; Compton DS; Hoos L; Davis HR Br J Pharmacol; 2001 Sep; 134(2):409-17. PubMed ID: 11564660 [TBL] [Abstract][Full Text] [Related]
18. Effect of melatonin on cholesterol absorption in rats. Hussain SA J Pineal Res; 2007 Apr; 42(3):267-71. PubMed ID: 17349025 [TBL] [Abstract][Full Text] [Related]
19. Syntheses and biological evaluation of novel quinuclidine derivatives as squalene synthase inhibitors. Ishihara T; Kakuta H; Moritani H; Ugawa T; Sakamoto S; Tsukamoto S; Yanagisawa I Bioorg Med Chem; 2003 May; 11(11):2403-14. PubMed ID: 12735986 [TBL] [Abstract][Full Text] [Related]
20. Effects of cholestyramine on lipoprotein levels and metabolism in Syrian hamsters. Groot PH; Pearce NJ; Suckling KE; Eisenberg S Biochim Biophys Acta; 1992 Jan; 1123(1):76-84. PubMed ID: 1730048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]