These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12746511)

  • 1. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements.
    Wicker T; Guyot R; Yahiaoui N; Keller B
    Plant Physiol; 2003 May; 132(1):52-63. PubMed ID: 12746511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Trail of
    Ventimiglia M; Pugliesi C; Vangelisti A; Usai G; Giordani T; Natali L; Cavallini A; Mascagni F
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32188063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary analysis of the CACTA DNA-transposon Caspar across wheat species using sequence comparison and in situ hybridization.
    Sergeeva EM; Salina EA; Adonina IG; Chalhoub B
    Mol Genet Genomics; 2010 Jul; 284(1):11-23. PubMed ID: 20512353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rim 2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species.
    Kwon SJ; Park KC; Kim JH; Lee JK; Kim NS
    BMC Genet; 2005 Mar; 6():15. PubMed ID: 15766385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily.
    DeMarco R; Venancio TM; Verjovski-Almeida S
    BMC Evol Biol; 2006 Nov; 6():89. PubMed ID: 17090310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution.
    Wicker T; Stein N; Albar L; Feuillet C; Schlagenhauf E; Keller B
    Plant J; 2001 May; 26(3):307-16. PubMed ID: 11439119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome.
    Wang GD; Tian PF; Cheng ZK; Wu G; Jiang JM; Li DB; Li Q; He ZH
    Mol Genet Genomics; 2003 Nov; 270(3):234-42. PubMed ID: 14513364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat.
    Charles M; Belcram H; Just J; Huneau C; Viollet A; Couloux A; Segurens B; Carter M; Huteau V; Coriton O; Appels R; Samain S; Chalhoub B
    Genetics; 2008 Oct; 180(2):1071-86. PubMed ID: 18780739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max.
    Zabala G; Vodkin L
    BMC Plant Biol; 2008 Dec; 8():124. PubMed ID: 19055742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small RNAs, DNA methylation and transposable elements in wheat.
    Cantu D; Vanzetti LS; Sumner A; Dubcovsky M; Matvienko M; Distelfeld A; Michelmore RW; Dubcovsky J
    BMC Genomics; 2010 Jun; 11():408. PubMed ID: 20584339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome.
    Tomita M; Asao M; Kuraki A
    J Integr Plant Biol; 2010 Jul; 52(7):679-91. PubMed ID: 20590997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block.
    Breen J; Wicker T; Kong X; Zhang J; Ma W; Paux E; Feuillet C; Appels R; Bellgard M
    BMC Plant Biol; 2010 May; 10():98. PubMed ID: 20507561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved and robust method to efficiently deplete repetitive elements from complex plant genomes.
    Ichida H; Abe T
    Plant Sci; 2019 Mar; 280():455-460. PubMed ID: 30824026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations.
    Sabot F; Guyot R; Wicker T; Chantret N; Laubin B; Chalhoub B; Leroy P; Sourdille P; Bernard M
    Mol Genet Genomics; 2005 Sep; 274(2):119-30. PubMed ID: 16034625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution.
    Altinkut A; Raskina O; Nevo E; Belyayev A
    Cell Mol Biol Lett; 2006; 11(2):214-30. PubMed ID: 16847566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species.
    Krattinger SG; Lagudah ES; Wicker T; Risk JM; Ashton AR; Selter LL; Matsumoto T; Keller B
    Plant J; 2011 Feb; 65(3):392-403. PubMed ID: 21265893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple homoplasious insertions and deletions of a Triticeae (Poaceae) DNA transposon: a phylogenetic perspective.
    Mason-Gamer RJ
    BMC Evol Biol; 2007 Jun; 7():92. PubMed ID: 17570855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.
    Zhang P; Li W; Fellers J; Friebe B; Gill BS
    Chromosoma; 2004 Mar; 112(6):288-99. PubMed ID: 14986017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids.
    Kwon SJ; Hong SW; Son JH; Lee JK; Cha YS; Eun MY; Kim NS
    Mol Cells; 2006 Jun; 21(3):360-6. PubMed ID: 16819298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in plant CACTA elements.
    Tian PF
    Yi Chuan Xue Bao; 2006 Sep; 33(9):765-74. PubMed ID: 16980122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.