These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 12746511)
21. Isolation and sequence analysis of the wheat B genome subtelomeric DNA. Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Afonnikov DA; Belcram H; Huneau C; Chalhoub B BMC Genomics; 2009 Sep; 10():414. PubMed ID: 19732459 [TBL] [Abstract][Full Text] [Related]
22. Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Middleton CP; Stein N; Keller B; Kilian B; Wicker T Plant J; 2013 Jan; 73(2):347-56. PubMed ID: 23057663 [TBL] [Abstract][Full Text] [Related]
23. Genetic diversity and phylogenetic relationship in AA Oryza species as revealed by Rim2/Hipa CACTA transposon display. Kwon SJ; Lee JK; Hong SW; Park YJ; McNally KL; Kim NS Genes Genet Syst; 2006 Apr; 81(2):93-101. PubMed ID: 16755133 [TBL] [Abstract][Full Text] [Related]
24. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes. Han Y; Qin S; Wessler SR BMC Genomics; 2013 Jan; 14():71. PubMed ID: 23369001 [TBL] [Abstract][Full Text] [Related]
25. Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA). Panaud O; Vitte C; Hivert J; Muzlak S; Talag J; Brar D; Sarr A Mol Genet Genomics; 2002 Sep; 268(1):113-21. PubMed ID: 12242506 [TBL] [Abstract][Full Text] [Related]
26. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Han H; Liu W; Lu Y; Zhang J; Yang X; Li X; Hu Z; Li L Planta; 2017 Feb; 245(2):425-437. PubMed ID: 27832372 [TBL] [Abstract][Full Text] [Related]
27. Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Kong XY; Gu YQ; You FM; Dubcovsky J; Anderson OD Plant Mol Biol; 2004 Jan; 54(1):55-69. PubMed ID: 15159634 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). Gao D; Zhao D; Abernathy B; Iwata-Otsubo A; Herrera-Estrella A; Jiang N; Jackson SA G3 (Bethesda); 2016 Jul; 6(7):2091-101. PubMed ID: 27185400 [TBL] [Abstract][Full Text] [Related]
29. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Mao L; Wood TC; Yu Y; Budiman MA; Tomkins J; Woo S; Sasinowski M; Presting G; Frisch D; Goff S; Dean RA; Wing RA Genome Res; 2000 Jul; 10(7):982-90. PubMed ID: 10899147 [TBL] [Abstract][Full Text] [Related]
30. Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Gu YQ; Anderson OD; Londeorë CF; Kong X; Chibbar RN; Lazo GR Genome; 2003 Dec; 46(6):1084-97. PubMed ID: 14663527 [TBL] [Abstract][Full Text] [Related]
31. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Jiang N; Feschotte C; Zhang X; Wessler SR Curr Opin Plant Biol; 2004 Apr; 7(2):115-9. PubMed ID: 15003209 [TBL] [Abstract][Full Text] [Related]
32. Diversity, abundance, and evolutionary dynamics of Pong-like transposable elements in Triticeae. Markova DN; Mason-Gamer RJ Mol Phylogenet Evol; 2015 Dec; 93():318-30. PubMed ID: 26206730 [TBL] [Abstract][Full Text] [Related]
33. Transcriptional activity of PIF and Pong-like Class II transposable elements in Triticeae. Markova DN; Mason-Gamer RJ BMC Evol Biol; 2017 Aug; 17(1):178. PubMed ID: 28774284 [TBL] [Abstract][Full Text] [Related]
34. The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms. Belyayev A; Josefiová J; Jandová M; Kalendar R; Mahelka V; Mandák B; Krak K Mob DNA; 2022 Apr; 13(1):8. PubMed ID: 35379321 [TBL] [Abstract][Full Text] [Related]
35. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. Garbus I; Romero JR; Valarik M; Vanžurová H; Karafiátová M; Cáccamo M; Doležel J; Tranquilli G; Helguera M; Echenique V BMC Genomics; 2015 May; 16(1):375. PubMed ID: 25962417 [TBL] [Abstract][Full Text] [Related]
36. High gene density is conserved at syntenic loci of small and large grass genomes. Feuillet C; Keller B Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8265-70. PubMed ID: 10393983 [TBL] [Abstract][Full Text] [Related]
37. Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Faris JD; Zhang Z; Fellers JP; Gill BS Funct Integr Genomics; 2008 May; 8(2):149-64. PubMed ID: 18210171 [TBL] [Abstract][Full Text] [Related]
38. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Wanjugi H; Coleman-Derr D; Huo N; Kianian SF; Luo MC; Wu J; Anderson O; Gu YQ Genome; 2009 Jun; 52(6):576-87. PubMed ID: 19483776 [TBL] [Abstract][Full Text] [Related]
39. Cloning of a CACTA transposon-like insertion in intron I of tomato invertase Lin5 gene and identification of transposase-like sequences of Solanaceae species. Proels RK; Roitsch T J Plant Physiol; 2006 Mar; 163(5):562-9. PubMed ID: 16473661 [TBL] [Abstract][Full Text] [Related]
40. TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. Mochida K; Yoshida T; Sakurai T; Ogihara Y; Shinozaki K Plant Physiol; 2009 Jul; 150(3):1135-46. PubMed ID: 19448038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]