These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 12746511)
41. Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Song WY; Pi LY; Bureau TE; Ronald PC Mol Gen Genet; 1998 Jun; 258(5):449-56. PubMed ID: 9669326 [TBL] [Abstract][Full Text] [Related]
42. A high-copy-number CACTA family transposon in temperate grasses and cereals. Langdon T; Jenkins G; Hasterok R; Jones RN; King IP Genetics; 2003 Mar; 163(3):1097-108. PubMed ID: 12663547 [TBL] [Abstract][Full Text] [Related]
43. Dynamics of tandem repetitive Afa-family sequences in Triticeae, wheat-related species. Nagaki K; Tsujimoto H; Sasakuma T J Mol Evol; 1998 Aug; 47(2):183-9. PubMed ID: 9694667 [TBL] [Abstract][Full Text] [Related]
44. The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. He ZH; Dong HT; Dong JX; Li DB; Ronald PC Mol Gen Genet; 2000 Sep; 264(1-2):2-10. PubMed ID: 11016827 [TBL] [Abstract][Full Text] [Related]
45. Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Chantret N; Cenci A; Sabot F; Anderson O; Dubcovsky J Mol Genet Genomics; 2004 May; 271(4):377-86. PubMed ID: 15014981 [TBL] [Abstract][Full Text] [Related]
46. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Kubis SE; Castilho AM; Vershinin AV; Heslop-Harrison JS Plant Mol Biol; 2003 May; 52(1):69-79. PubMed ID: 12825690 [TBL] [Abstract][Full Text] [Related]
47. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Cavallini A; Natali L; Zuccolo A; Giordani T; Jurman I; Ferrillo V; Vitacolonna N; Sarri V; Cattonaro F; Ceccarelli M; Cionini PG; Morgante M Theor Appl Genet; 2010 Feb; 120(3):491-508. PubMed ID: 19826774 [TBL] [Abstract][Full Text] [Related]
48. Characterization of SBEIIa homoeologous genes in bread wheat. Botticella E; Sestili F; Lafiandra D Mol Genet Genomics; 2012 Jun; 287(6):515-24. PubMed ID: 22570075 [TBL] [Abstract][Full Text] [Related]
49. Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Scherrer B; Isidore E; Klein P; Kim JS; Bellec A; Chalhoub B; Keller B; Feuillet C Plant Cell; 2005 Feb; 17(2):361-74. PubMed ID: 15659632 [TBL] [Abstract][Full Text] [Related]
50. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Huang J; Zhang K; Shen Y; Huang Z; Li M; Tang D; Gu M; Cheng Z Genomics; 2009 Mar; 93(3):274-81. PubMed ID: 19071208 [TBL] [Abstract][Full Text] [Related]
51. Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes. Mizuno H; Ito K; Wu J; Tanaka T; Kanamori H; Katayose Y; Sasaki T; Matsumoto T DNA Res; 2006 Dec; 13(6):267-74. PubMed ID: 17298954 [TBL] [Abstract][Full Text] [Related]
52. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. Sehgal SK; Li W; Rabinowicz PD; Chan A; Simková H; Doležel J; Gill BS BMC Plant Biol; 2012 May; 12():64. PubMed ID: 22559868 [TBL] [Abstract][Full Text] [Related]
53. Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Miura A; Kato M; Watanabe K; Kawabe A; Kotani H; Kakutani T Mol Genet Genomics; 2004 Jan; 270(6):524-32. PubMed ID: 14608503 [TBL] [Abstract][Full Text] [Related]
54. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Wicker T; Keller B Genome Res; 2007 Jul; 17(7):1072-81. PubMed ID: 17556529 [TBL] [Abstract][Full Text] [Related]
55. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.). Kim S; Park JY; Yang TJ Mol Genet Genomics; 2015 Jun; 290(3):1027-37. PubMed ID: 25515665 [TBL] [Abstract][Full Text] [Related]
56. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Bureau TE; Wessler SR Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1411-5. PubMed ID: 8108422 [TBL] [Abstract][Full Text] [Related]
57. Transposition of Tnr1 in rice genomes to 5'-PuTAPy-3' sites, duplicating the TA sequence. Tenzen T; Matsuda Y; Ohtsubo H; Ohtsubo E Mol Gen Genet; 1994 Nov; 245(4):441-8. PubMed ID: 7808393 [TBL] [Abstract][Full Text] [Related]
58. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Salse J; Bolot S; Throude M; Jouffe V; Piegu B; Quraishi UM; Calcagno T; Cooke R; Delseny M; Feuillet C Plant Cell; 2008 Jan; 20(1):11-24. PubMed ID: 18178768 [TBL] [Abstract][Full Text] [Related]
59. DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. Jing HC; Bayon C; Kanyuka K; Berry S; Wenzl P; Huttner E; Kilian A; Hammond-Kosack KE BMC Genomics; 2009 Sep; 10():458. PubMed ID: 19788762 [TBL] [Abstract][Full Text] [Related]
60. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Wicker T; Mayer KF; Gundlach H; Martis M; Steuernagel B; Scholz U; Simková H; Kubaláková M; Choulet F; Taudien S; Platzer M; Feuillet C; Fahima T; Budak H; Dolezel J; Keller B; Stein N Plant Cell; 2011 May; 23(5):1706-18. PubMed ID: 21622801 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]