These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12747568)

  • 1. Decision tree SAR models for developmental toxicity based on an FDA/TERIS database.
    Sussman NB; Arena VC; Yu S; Mazumdar S; Thampatty BP
    SAR QSAR Environ Res; 2003 Apr; 14(2):83-96. PubMed ID: 12747568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models.
    Arena VC; Sussman NB; Mazumdar S; Yu S; Macina OT
    SAR QSAR Environ Res; 2004 Feb; 15(1):1-18. PubMed ID: 15113065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building an organ-specific carcinogenic database for SAR analyses.
    Young J; Tong W; Fang H; Xie Q; Pearce B; Hashemi R; Beger R; Cheeseman M; Chen J; Chang YC; Kodell R
    J Toxicol Environ Health A; 2004 Sep; 67(17):1363-89. PubMed ID: 15371237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB.
    Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV
    Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Ivanov J; Klopman G; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):136-55. PubMed ID: 17175082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):115-35. PubMed ID: 17207562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical and graph theoretical descriptors in developmental toxicity SAR: a comparative study.
    Macina OT; Sussman NB; Claycamp HG; Grant SG
    SAR QSAR Environ Res; 2001 Feb; 11(5-6):345-62. PubMed ID: 11328709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental toxicity prediction.
    Venkatapathy R; Wang NC
    Methods Mol Biol; 2013; 930():305-40. PubMed ID: 23086848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for safety assessment of chemicals with data gaps for developmental and/or reproductive toxicity.
    Blackburn K; Daston G; Fisher J; Lester C; Naciff JM; Rufer ES; Stuard SB; Woeller K
    Regul Toxicol Pharmacol; 2015 Jul; 72(2):202-15. PubMed ID: 25910676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants associated with risk of human developmental toxicity.
    Ghanooni M; Mattison DR; Zhang YP; Macina OT; Rosenkranz HS; Klopman G
    Am J Obstet Gynecol; 1997 Apr; 176(4):799-805; discussion 805-6. PubMed ID: 9125603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decision forest: combining the predictions of multiple independent decision tree models.
    Tong W; Hong H; Fang H; Xie Q; Perkins R
    J Chem Inf Comput Sci; 2003; 43(2):525-31. PubMed ID: 12653517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FDA toxicity databases and real-time data entry.
    Arvidson KB
    Toxicol Appl Pharmacol; 2008 Nov; 233(1):17-9. PubMed ID: 18656494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants.
    Wu S; Fisher J; Naciff J; Laufersweiler M; Lester C; Daston G; Blackburn K
    Chem Res Toxicol; 2013 Dec; 26(12):1840-61. PubMed ID: 24206190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity.
    Zvinavashe E; Murk AJ; Rietjens IM
    Toxicol Lett; 2009 Jan; 184(1):67-72. PubMed ID: 19041378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic oral LOAEL prediction by using a commercially available computational QSAR tool.
    Rupp B; Appel KE; Gundert-Remy U
    Arch Toxicol; 2010 Sep; 84(9):681-8. PubMed ID: 20224925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity.
    Hewitt M; Ellison CM; Enoch SJ; Madden JC; Cronin MT
    Reprod Toxicol; 2010 Aug; 30(1):147-60. PubMed ID: 20006701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.