These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12747675)

  • 41. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.
    Lan PX; Lee JW; Seol YJ; Cho DW
    J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering.
    Ahn CB; Kim Y; Park SJ; Hwang Y; Lee JW
    J Biomater Sci Polym Ed; 2018; 29(7-9):917-931. PubMed ID: 28929935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [FTIR study on the synthesis of poly(propylene fumarate) and its copolymer].
    Zhang N; Cai ZY; Chang JB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):35-7. PubMed ID: 20302075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Versatility of biodegradable biopolymers: degradability and an in vivo application.
    Hasirci V; Lewandrowski K; Gresser JD; Wise DL; Trantolo DJ
    J Biotechnol; 2001 Mar; 86(2):135-50. PubMed ID: 11245902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).
    Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering.
    Alge DL; Bennett J; Treasure T; Voytik-Harbin S; Goebel WS; Chu TM
    J Biomed Mater Res A; 2012 Jul; 100(7):1792-802. PubMed ID: 22489012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.
    Lalwani G; Henslee AM; Farshid B; Lin L; Kasper FK; Qin YX; Mikos AG; Sitharaman B
    Biomacromolecules; 2013 Mar; 14(3):900-9. PubMed ID: 23405887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold.
    Peter SJ; Miller ST; Zhu G; Yasko AW; Mikos AG
    J Biomed Mater Res; 1998 Jul; 41(1):1-7. PubMed ID: 9641618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds.
    Wolfe MS; Dean D; Chen JE; Fisher JP; Han S; Rimnac CM; Mikos AG
    J Biomed Mater Res; 2002 Jul; 61(1):159-64. PubMed ID: 12001259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing degradability, bioactivity, and osteocompatibility of poly (propylene fumarate) bone filler by incorporation of Mg-Ca-P nanoparticles.
    Karfarma M; Esnaashary MH; Rezaie HR; Javadpour J; Naimi-Jamal MR
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111038. PubMed ID: 32993982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds.
    Mishra R; Roux BM; Posukonis M; Bodamer E; Brey EM; Fisher JP; Dean D
    Biomaterials; 2016 Jan; 77():255-66. PubMed ID: 26606451
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays.
    Lu Y; Mantha SN; Crowder DC; Chinchilla S; Shah KN; Yun YH; Wicker RB; Choi JW
    Biofabrication; 2015 Sep; 7(4):045001. PubMed ID: 26418306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.
    Lee KW; Wang S; Yaszemski MJ; Lu L
    Biomaterials; 2008 Jul; 29(19):2839-48. PubMed ID: 18403013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Injectable biomaterials for minimally invasive orthopedic treatments.
    Jayabalan M; Shalumon KT; Mitha MK
    J Mater Sci Mater Med; 2009 Jun; 20(6):1379-87. PubMed ID: 19160023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(Propylene Fumarate)-Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages.
    Teng Y; Giambini H; Rezaei A; Liu X; Lee Miller A; Waletzki BE; Lu L
    J Biomech Eng; 2018 Oct; 140(10):1010091-8. PubMed ID: 30029248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of macromer molecular weight on in vitro ophthalmic drug release from photo-crosslinked matrices.
    Haesslein A; Hacker MC; Mikos AG
    Acta Biomater; 2008 Jan; 4(1):1-10. PubMed ID: 17938009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.
    Mitha MK; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S203-11. PubMed ID: 18592346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds.
    Fisher JP; Holland TA; Dean D; Engel PS; Mikos AG
    J Biomater Sci Polym Ed; 2001; 12(6):673-87. PubMed ID: 11556743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of photocrosslinkable resin components and 3D printing process parameters.
    Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D
    Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite.
    Hakimimehr D; Liu DM; Troczynski T
    Biomaterials; 2005 Dec; 26(35):7297-303. PubMed ID: 16026822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.