BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12748168)

  • 41. Release of 5'-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein.
    Dianov G; Sedgwick B; Daly G; Olsson M; Lovett S; Lindahl T
    Nucleic Acids Res; 1994 Mar; 22(6):993-8. PubMed ID: 7512263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The action of Escherichia coli endonuclease III on multiply damaged sites in DNA.
    Chaudhry MA; Weinfeld M
    J Mol Biol; 1995 Jun; 249(5):914-22. PubMed ID: 7791217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rejoining of DNA double-strand breaks in vitro by single-strand annealing.
    Göttlich B; Reichenberger S; Feldmann E; Pfeiffer P
    Eur J Biochem; 1998 Dec; 258(2):387-95. PubMed ID: 9874203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanism of base excision repair in Chlamydiophila pneumoniae.
    Liu X; Liu J
    DNA Repair (Amst); 2005 Nov; 4(11):1295-305. PubMed ID: 16085468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair.
    Whitehouse CJ; Taylor RM; Thistlethwaite A; Zhang H; Karimi-Busheri F; Lasko DD; Weinfeld M; Caldecott KW
    Cell; 2001 Jan; 104(1):107-17. PubMed ID: 11163244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The histone-like protein HU binds specifically to DNA recombination and repair intermediates.
    Kamashev D; Rouviere-Yaniv J
    EMBO J; 2000 Dec; 19(23):6527-35. PubMed ID: 11101525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli.
    Shikazono N; Akamatsu K
    Sci Rep; 2020 Jun; 10(1):9737. PubMed ID: 32546758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconstitution of human base excision repair with purified proteins.
    Nicholl ID; Nealon K; Kenny MK
    Biochemistry; 1997 Jun; 36(24):7557-66. PubMed ID: 9200707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4.
    Sriskanda V; Schwer B; Ho CK; Shuman S
    Nucleic Acids Res; 1999 Oct; 27(20):3953-63. PubMed ID: 10497258
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Excision repair of uracil incorporated in DNA as a result of a defect in dUTPase.
    Tye BK; Lehman IR
    J Mol Biol; 1977 Dec; 117(2):293-306. PubMed ID: 342701
    [No Abstract]   [Full Text] [Related]  

  • 51. Coding properties of poly(deoxycytidylic acid) templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes.
    Boiteux S; Laval J
    Biochemistry; 1982 Dec; 21(26):6746-51. PubMed ID: 6760893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Repair of clustered uracil DNA damages in Escherichia coli.
    D'souza DI; Harrison L
    Nucleic Acids Res; 2003 Aug; 31(15):4573-81. PubMed ID: 12888518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.
    Nandakumar J; Nair PA; Shuman S
    Mol Cell; 2007 Apr; 26(2):257-71. PubMed ID: 17466627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1.
    Taylor RM; Wickstead B; Cronin S; Caldecott KW
    Curr Biol; 1998 Jul; 8(15):877-80. PubMed ID: 9705932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma LoVo and Escherichia coli cell extracts.
    Sanderson RJ; Bennett SE; Sung JS; Mosbaugh DW
    Prog Nucleic Acid Res Mol Biol; 2001; 68():165-88. PubMed ID: 11554295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway.
    Audebert M; Salles B; Weinfeld M; Calsou P
    J Mol Biol; 2006 Feb; 356(2):257-65. PubMed ID: 16364363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA.
    Cannan WJ; Rashid I; Tomkinson AE; Wallace SS; Pederson DS
    J Biol Chem; 2017 Mar; 292(13):5227-5238. PubMed ID: 28184006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria.
    Purnapatre K; Handa P; Venkatesh J; Varshney U
    Nucleic Acids Res; 1999 Sep; 27(17):3487-92. PubMed ID: 10446237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks.
    Ramsden DA; Gellert M
    EMBO J; 1998 Jan; 17(2):609-14. PubMed ID: 9430651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.