BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 12748648)

  • 1. The complexities of skeletal biology.
    Karsenty G
    Nature; 2003 May; 423(6937):316-8. PubMed ID: 12748648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone cell biology: the regulation of development, structure, and function in the skeleton.
    Marks SC; Popoff SN
    Am J Anat; 1988 Sep; 183(1):1-44. PubMed ID: 3055928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects.
    Blair HC; Zaidi M; Huang CL; Sun L
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):401-15. PubMed ID: 18710437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue.
    Klement BJ; Spooner BS
    J Cell Biochem; 1993 Mar; 51(3):252-6. PubMed ID: 8501126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and molecular interactions regulating skeletogenesis.
    Colnot C
    J Cell Biochem; 2005 Jul; 95(4):688-97. PubMed ID: 15880692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone biology and the pathogenesis of osteoporosis.
    Russell RG; Espina B; Hulley P
    Curr Opin Rheumatol; 2006 Jun; 18 Suppl 1():S3-10. PubMed ID: 16735843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Histogenesis of the skeleton and morphogenesis of cartilage-forming neoplasias].
    Aigner T
    Verh Dtsch Ges Pathol; 2007; 91():49-56. PubMed ID: 18314595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of bone morphogenetic proteins in endochondral bone formation.
    Tsumaki N; Yoshikawa H
    Cytokine Growth Factor Rev; 2005 Jun; 16(3):279-85. PubMed ID: 15869898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome duplication and the origin of the vertebrate skeleton.
    Zhang G; Cohn MJ
    Curr Opin Genet Dev; 2008 Aug; 18(4):387-93. PubMed ID: 18721879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal biology over the life span: a view from the surfaces.
    Gosman JH; Stout SD; Larsen CS
    Am J Phys Anthropol; 2011; 146 Suppl 53():86-98. PubMed ID: 22101688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones.
    Baffi MO; Slattery E; Sohn P; Moses HL; Chytil A; Serra R
    Dev Biol; 2004 Dec; 276(1):124-42. PubMed ID: 15531369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal remodeling in health and disease.
    Zaidi M
    Nat Med; 2007 Jul; 13(7):791-801. PubMed ID: 17618270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of endochondral bone development.
    Provot S; Schipani E
    Biochem Biophys Res Commun; 2005 Mar; 328(3):658-65. PubMed ID: 15694399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraflagellar transport in skeletal development.
    Serra R
    J Musculoskelet Neuronal Interact; 2007; 7(4):302-3. PubMed ID: 18094483
    [No Abstract]   [Full Text] [Related]  

  • 15. Cell lines and primary cell cultures in the study of bone cell biology.
    Kartsogiannis V; Ng KW
    Mol Cell Endocrinol; 2004 Dec; 228(1-2):79-102. PubMed ID: 15541574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic bone cell biology.
    Freemont AJ
    Int J Exp Pathol; 1993 Aug; 74(4):411-6. PubMed ID: 8398815
    [No Abstract]   [Full Text] [Related]  

  • 17. Skeletal function and structure: implications for tissue-targeted therapeutics.
    Shea JE; Miller SC
    Adv Drug Deliv Rev; 2005 May; 57(7):945-57. PubMed ID: 15876397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history.
    Bromage TG; Lacruz RS; Hogg R; Goldman HM; McFarlin SC; Warshaw J; Dirks W; Perez-Ochoa A; Smolyar I; Enlow DH; Boyde A
    Calcif Tissue Int; 2009 May; 84(5):388-404. PubMed ID: 19234658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of osteoblast function and regulation of bone mass.
    Harada S; Rodan GA
    Nature; 2003 May; 423(6937):349-55. PubMed ID: 12748654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple roles for neurofibromin in skeletal development and growth.
    Kolanczyk M; Kossler N; Kühnisch J; Lavitas L; Stricker S; Wilkening U; Manjubala I; Fratzl P; Spörle R; Herrmann BG; Parada LF; Kornak U; Mundlos S
    Hum Mol Genet; 2007 Apr; 16(8):874-86. PubMed ID: 17317783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.