These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12749)

  • 21. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species.
    Jin JQ; Yao MZ; Ma CL; Ma JQ; Chen L
    Plant Physiol Biochem; 2016 Mar; 100():18-26. PubMed ID: 26773541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a quaternary pentamine on RNA stabilization and enzymatic methylation.
    Hayrapetyan A; Grosjean H; Helm M
    Biol Chem; 2009 Sep; 390(9):851-61. PubMed ID: 19558320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of individual procaryotic and eucaryotic transfer-ribonucleic acids by B subtilis adenine-1-methyltransferase specific for the dihydrouridine loop.
    Kersten H; Raettig R; Weissenbach J; Dirheimer G
    Nucleic Acids Res; 1978 Aug; 5(8):3033-42. PubMed ID: 99729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methyl-accepting RNA in 13762 mammary adenocarcinoma correlated with low adenine methyltransferase levels.
    Salas CE; Uschmann BD; Leboy PS
    Cancer Res; 1982 Dec; 42(12):5004-9. PubMed ID: 7139605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of individual Escherichia coli transfer ribonucleic acids by 1-adenine-specific methyltransferase from rat liver.
    Kraus J
    Biochem J; 1978 Jan; 169(1):247-9. PubMed ID: 343782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.).
    Mizuno K; Kato M; Irino F; Yoneyama N; Fujimura T; Ashihara H
    FEBS Lett; 2003 Jul; 547(1-3):56-60. PubMed ID: 12860386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine: a well known but little mentioned compound in plant science.
    Ashihara H; Crozier A
    Trends Plant Sci; 2001 Sep; 6(9):407-13. PubMed ID: 11544129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caffeine in tea plants [Camellia sinensis (L) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester.
    Ramarethinam S; Rajalakshmi N
    Indian J Exp Biol; 2004 Jun; 42(6):575-80. PubMed ID: 15260108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings.
    Deng WW; Ashihara H
    Plant Cell Physiol; 2010 Dec; 51(12):2105-18. PubMed ID: 21071429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of estradiol on uterine ribonucleic acid metabolism. Assessment of transfer ribonucleic acid methylation.
    Munns TW; Sims HF; Katzman PA
    Biochemistry; 1975 Oct; 14(21):4758-64. PubMed ID: 1182115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.
    Xia EH; Zhang HB; Sheng J; Li K; Zhang QJ; Kim C; Zhang Y; Liu Y; Zhu T; Li W; Huang H; Tong Y; Nan H; Shi C; Shi C; Jiang JJ; Mao SY; Jiao JY; Zhang D; Zhao Y; Zhao YJ; Zhang LP; Liu YL; Liu BY; Yu Y; Shao SF; Ni DJ; Eichler EE; Gao LZ
    Mol Plant; 2017 Jun; 10(6):866-877. PubMed ID: 28473262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase.
    Raettig R; Kersten H; Weissenbach J; Dirheimer G
    Nucleic Acids Res; 1977 Jun; 4(6):1769-82. PubMed ID: 408794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ethionine on the synthesis and transfer of active methyl groups.
    Hancock RL
    Physiol Chem Phys; 1972; 4(6):573-6. PubMed ID: 4376845
    [No Abstract]   [Full Text] [Related]  

  • 35. Metabolism of xanthine and hypoxanthine in the tea plant (Thea sinensis L.).
    Suzuki T; Takahashi E
    Biochem J; 1975 Jan; 146(1):79-85. PubMed ID: 1147906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
    Zhu B; Chen LB; Lu M; Zhang J; Han J; Deng WW; Zhang ZZ
    J Agric Food Chem; 2019 Mar; 67(12):3400-3411. PubMed ID: 30830771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sites of methylation of purified transfer ribonucleic acid preparations by enzymes from normal tissues and from tumours induced by dimethylnitrosamine and 1,2-dimethylhydrazine.
    Pegg AE
    Biochem J; 1974 Feb; 137(2):239-48. PubMed ID: 4596141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of genes in purple-shoot tea tender leaves and mature leaves during leaf growth.
    Zhou Q; Sun W; Lai Z
    J Sci Food Agric; 2016 Apr; 96(6):1982-9. PubMed ID: 26084622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource.
    Chen Y; Zhou Y; Zeng L; Dong F; Tu Y; Yang Z
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29596355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards generating caffeine-free tea by metabolic engineering.
    Yadav SK; Ahuja PS
    Plant Foods Hum Nutr; 2007 Dec; 62(4):185-91. PubMed ID: 17929169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.