BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12749081)

  • 1. Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation.
    Drazkiewicz M; Tukendorf A; Baszyński T
    J Plant Physiol; 2003 Mar; 160(3):247-54. PubMed ID: 12749081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms.
    Drazkiewicz M; Baszyński T
    J Plant Physiol; 2005 Sep; 162(9):1013-21. PubMed ID: 16173462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against cd stress in the two rice genotypes differing in Cd tolerance.
    Cai Y; Cao F; Cheng W; Zhang G; Wu F
    Biol Trace Elem Res; 2011 Nov; 143(2):1159-73. PubMed ID: 21191821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis of Elsholtzia argyi--A Cadmium Accumulating Plant.
    Li S; Yang W; Yang T; Chen Y; Ni W
    Int J Phytoremediation; 2015; 17(1-6):85-92. PubMed ID: 25174428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.
    Vaculík M; Pavlovič A; Lux A
    Ecotoxicol Environ Saf; 2015 Oct; 120():66-73. PubMed ID: 26036417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium phytotoxicity, related physiological changes in Pontederia cordata: antioxidative, osmoregulatory substances, phytochelatins, photosynthesis, and chlorophyll fluorescence.
    Xin JP; Ma S; Zhao C; Li Y; Tian RN
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41596-41608. PubMed ID: 32691317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection.
    Potesil D; Petrlova J; Adam V; Vacek J; Klejdus B; Zehnalek J; Trnkova L; Havel L; Kizek R
    J Chromatogr A; 2005 Aug; 1084(1-2):134-44. PubMed ID: 16114246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize.
    Lysenko EA; Klaus AA; Pshybytko NL; Kusnetsov VV
    Photosynth Res; 2015 Aug; 125(1-2):291-303. PubMed ID: 25315190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).
    Gondor OK; Pál M; Darkó É; Janda T; Szalai G
    PLoS One; 2016; 11(8):e0160157. PubMed ID: 27490102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
    Tang L; Ying RR; Jiang D; Zeng XW; Morel JL; Tang YT; Qiu RL
    Plant Physiol Biochem; 2013 Dec; 73():70-6. PubMed ID: 24077231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars.
    Ekmekçi Y; Tanyolaç D; Ayhan B
    J Plant Physiol; 2008 Apr; 165(6):600-11. PubMed ID: 17728009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones.
    Pietrini F; Zacchini M; Iori V; Pietrosanti L; Ferretti M; Massacci A
    Plant Biol (Stuttg); 2010 Mar; 12(2):355-63. PubMed ID: 20398241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response and detoxification strategies of three freshwater phytoplankton species, Aphanizomenon flos-aquae, Pediastrum simplex, and Synedra acus, to cadmium.
    Ran X; Yue H; Fu X; Kang Y; Xu S; Yang Y; Xu J; Shi J; Wu Z
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19596-606. PubMed ID: 26272291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress.
    Karalija E; Selović A
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33370-33380. PubMed ID: 30259326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium.
    Hu H; Wang L; Wang Q; Jiao L; Hua W; Zhou Q; Huang X
    Environ Toxicol Chem; 2014 Nov; 33(11):2455-62. PubMed ID: 25113627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution.
    Maier EA; Matthews RD; McDowell JA; Walden RR; Ahner BA
    J Environ Qual; 2003; 32(4):1356-64. PubMed ID: 12931891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Moss
    Bellini E; Maresca V; Betti C; Castiglione MR; Fontanini D; Capocchi A; Sorce C; Borsò M; Bruno L; Sorbo S; Basile A; Sanità di Toppi L
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves.
    Astolfi S; Zuchi S; Passera C
    J Plant Physiol; 2004 Jul; 161(7):795-802. PubMed ID: 15310068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray absorption spectroscopy of cadmium phytochelatin and model systems.
    Pickering IJ; Prince RC; George GN; Rauser WE; Wickramasinghe WA; Watson AA; Dameron CT; Dance IG; Fairlie DP; Salt DE
    Biochim Biophys Acta; 1999 Jan; 1429(2):351-64. PubMed ID: 9989220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro.
    Chassaigne H; Vacchina V; Kutchan TM; Zenk MH
    Phytochemistry; 2001 Apr; 56(7):657-68. PubMed ID: 11314950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.