These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 12749084)
1. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Gitelson AA; Gritz Y; Merzlyak MN J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084 [TBL] [Abstract][Full Text] [Related]
2. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Gitelson AA; Zur Y; Chivkunova OB; Merzlyak MN Photochem Photobiol; 2002 Mar; 75(3):272-81. PubMed ID: 11950093 [TBL] [Abstract][Full Text] [Related]
3. Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves. Huang WD; Lin KH; Hsu MH; Huang MY; Yang ZW; Chao PY; Yang CM Bot Stud; 2014 Dec; 55(1):11. PubMed ID: 28510919 [TBL] [Abstract][Full Text] [Related]
4. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches. Gitelson A; Solovchenko A J Photochem Photobiol B; 2018 Jan; 178():537-544. PubMed ID: 29247926 [TBL] [Abstract][Full Text] [Related]
5. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field]. Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the leaf chlorophyll content using multiangular spectral reflectance factor. Li W; Sun Z; Lu S; Omasa K Plant Cell Environ; 2019 Nov; 42(11):3152-3165. PubMed ID: 31256442 [TBL] [Abstract][Full Text] [Related]
7. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Maccioni A; Agati G; Mazzinghi P J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848 [TBL] [Abstract][Full Text] [Related]
8. In situ hyperspectral data analysis for pigment content estimation of rice leaves. Cheng Q; Huang JF; Wang XZ; Wang RC J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990 [TBL] [Abstract][Full Text] [Related]
9. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related]
10. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. Junker LV; Ensminger I Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514 [TBL] [Abstract][Full Text] [Related]
11. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio. Gitelson A J Plant Physiol; 2020 Sep; 252():153227. PubMed ID: 32683162 [TBL] [Abstract][Full Text] [Related]
12. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. Fassnacht FE; Stenzel S; Gitelson AA J Plant Physiol; 2015 Mar; 176():210-7. PubMed ID: 25512167 [TBL] [Abstract][Full Text] [Related]
13. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie]. Liu ZY; Shi JJ; Wang DC; Huang JF Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693 [TBL] [Abstract][Full Text] [Related]
14. [The spectral characteristics and chlorophyll content at winter wheat growth stages]. Sun H; Li MZ; Zhao Y; Zhang YE; Wang XM; Li XH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):192-6. PubMed ID: 20302112 [TBL] [Abstract][Full Text] [Related]
15. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Ayala-Silva T; Beyl CA Adv Space Res; 2005; 35(2):305-17. PubMed ID: 15934211 [TBL] [Abstract][Full Text] [Related]
16. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content. Zhang J; Huang W; Zhou Q PLoS One; 2014; 9(11):e110812. PubMed ID: 25365207 [TBL] [Abstract][Full Text] [Related]
17. Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups. Gitelson A; Solovchenko A; Viña A J Plant Physiol; 2020 Nov; 254():153277. PubMed ID: 32979788 [TBL] [Abstract][Full Text] [Related]
18. Hyperspectral Prediction Models of Chlorophyll Content in Zhang Y; Ru G; Zhao Z; Wang D Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409349 [TBL] [Abstract][Full Text] [Related]
19. In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. Zou X; Shi J; Hao L; Zhao J; Mao H; Chen Z; Li Y; Holmes M Anal Chim Acta; 2011 Nov; 706(1):105-12. PubMed ID: 21995916 [TBL] [Abstract][Full Text] [Related]
20. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow-induced conformational pigment bed changes. Van Wittenberghe S; Alonso L; Malenovský Z; Moreno J Photosynth Res; 2019 Dec; 142(3):283-305. PubMed ID: 31541418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]