These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12749695)

  • 1. Aspartic peptidase inhibitors: implications in drug development.
    Dash C; Kulkarni A; Dunn B; Rao M
    Crit Rev Biochem Mol Biol; 2003; 38(2):89-119. PubMed ID: 12749695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of potent aspartic protease inhibitors to treat various diseases.
    Nguyen JT; Hamada Y; Kimura T; Kiso Y
    Arch Pharm (Weinheim); 2008 Sep; 341(9):523-35. PubMed ID: 18763714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspartic proteases in drug discovery.
    Eder J; Hommel U; Cumin F; Martoglio B; Gerhartz B
    Curr Pharm Des; 2007; 13(3):271-85. PubMed ID: 17313361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin.
    Hartman AM; Mondal M; Radeva N; Klebe G; Hirsch AK
    Int J Mol Sci; 2015 Aug; 16(8):19184-94. PubMed ID: 26287174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of aspartic proteases in human diseases: molecular modeling comes of age.
    Hoegl L; Korting HC; Klebe G
    Pharmazie; 1999 May; 54(5):319-29. PubMed ID: 10368824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of unsymmetrical peptidyl urea inhibitors of aspartic peptidases.
    Dales NA; Bohacek RS; Satyshur KA; Rich DH
    Org Lett; 2001 Jul; 3(15):2313-6. PubMed ID: 11463304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-secretase as a therapeutic target for inhibitor drugs.
    Ghosh AK; Hong L; Tang J
    Curr Med Chem; 2002 Jun; 9(11):1135-44. PubMed ID: 12052177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structures of five renin inhibitors bound to saccharopepsin: exploration of active-site specificity.
    Cronin NB; Badasso MO; J Tickle I; Dreyer T; Hoover DJ; Rosati RL; Humblet CC; Lunney EA; Cooper JB
    J Mol Biol; 2000 Nov; 303(5):745-60. PubMed ID: 11061973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the interaction between the aspartic peptidase inhibitor SQAPI and aspartic peptidases using surface plasmon resonance.
    Farley PC; Christeller JT; Sullivan ME; Sullivan PA; Laing WA
    J Mol Recognit; 2002; 15(3):135-44. PubMed ID: 12203839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity in the binding of inhibitors to the active site of human/primate aspartic proteinases: analysis of P2-P1-P1'-P2' variation.
    Rao CM; Scarborough PE; Kay J; Batley B; Rapundalo S; Klutchko S; Taylor MD; Lunney EA; Humblet CC; Dunn BM
    J Med Chem; 1993 Sep; 36(18):2614-20. PubMed ID: 8410973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design: potent inhibitors of human brain memapsin 2 (beta-secretase).
    Ghosh AK; Bilcer G; Harwood C; Kawahama R; Shin D; Hussain KA; Hong L; Loy JA; Nguyen C; Koelsch G; Ermolieff J; Tang J
    J Med Chem; 2001 Aug; 44(18):2865-8. PubMed ID: 11520194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From peptides to non-peptide peptidomimetics: design and synthesis of new piperidine inhibitors of aspartic peptidases.
    Bursavich MG; West CW; Rich DH
    Org Lett; 2001 Jul; 3(15):2317-20. PubMed ID: 11463305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New directions for protease inhibitors directed drug discovery.
    Hamada Y; Kiso Y
    Biopolymers; 2016 Nov; 106(4):563-79. PubMed ID: 26584340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of scytalidoglutamic peptidase with its first potent inhibitor provides insights into substrate specificity and catalysis.
    Pillai B; Cherney MM; Hiraga K; Takada K; Oda K; James MN
    J Mol Biol; 2007 Jan; 365(2):343-61. PubMed ID: 17069854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional aspartic peptidase prosegments.
    Horimoto Y; Dee DR; Yada RY
    N Biotechnol; 2009 Jun; 25(5):318-24. PubMed ID: 19491047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.
    McGillewie L; Ramesh M; Soliman ME
    Protein J; 2017 Oct; 36(5):385-396. PubMed ID: 28762197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity studies of FIV and HIV protease inhibitors containing allophenylnorstatine.
    Le VD; Mak CC; Lin YC; Elder JH; Wong CH
    Bioorg Med Chem; 2001 May; 9(5):1185-95. PubMed ID: 11377177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of bicyclic acetals as Beta Secretase (BACE1) inhibitors.
    Innocenti R; Lenci E; Menchi G; Pupi A; Trabocchi A
    Bioorg Med Chem; 2017 Oct; 25(19):5077-5083. PubMed ID: 28359674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies of vacuolar plasmepsins.
    Bhaumik P; Gustchina A; Wlodawer A
    Biochim Biophys Acta; 2012 Jan; 1824(1):207-23. PubMed ID: 21540129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.