These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12749699)

  • 1. Fission reactor neutron sources for neutron capture therapy--a critical review.
    Harling OK; Riley KJ
    J Neurooncol; 2003; 62(1-2):7-17. PubMed ID: 12749699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2004 Aug; 49(16):3725-35. PubMed ID: 15446801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).
    Clement SD; Choi JR; Zamenhof RG; Yanch JC; Harling OK
    Basic Life Sci; 1990; 54():51-69. PubMed ID: 2268248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thick beryllium target as an epithermal neutron source for neutron capture therapy.
    Wang CK; Moore BR
    Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The requirements and development of neutron beams for neutron capture therapy of brain cancer.
    Moss RL; Aizawa O; Beynon D; Brugger R; Constantine G; Harling O; Liu HB; Watkins P
    J Neurooncol; 1997 May; 33(1-2):27-40. PubMed ID: 9151221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of a 252Cf-based neutron beam via subcritical multiplication for neutron capture therapy.
    Wang CK; Zino JF; Kessler G
    Appl Radiat Isot; 2000; 53(4-5):811-4. PubMed ID: 11003524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron capture therapy beams at the MIT Research Reactor.
    Choi JR; Clement SD; Harling OK; Zamenhof RG
    Basic Life Sci; 1990; 54():201-18. PubMed ID: 2176454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT--Hatanaka memorial lecture.
    Harling OK
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S7-11. PubMed ID: 19428265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calculational study of tangential and radial beams in HIFAR for neutron capture therapy.
    Harrington BV
    Basic Life Sci; 1990; 54():97-107. PubMed ID: 2268250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron neutron capture therapy of brain tumors: past history, current status, and future potential.
    Barth RF; Soloway AH; Brugger RM
    Cancer Invest; 1996; 14(6):534-50. PubMed ID: 8951358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron cross-sections for next generation reactors: new data from n_TOF.
    Colonna N; Abbondanno U; Aerts G; Alvarez H; Alvarez-Velarde F; Andriamonje S; Andrzejewski J; Assimakopoulos P; Audouin L; Badurek G; Baumann P; Becvar F; Berthoumieux E; Calviani M; Calviño F; Cano-Ott D; Capote R; de Albornoz AC; Cennini P; Chepel V; Chiaveri E; Cortes G; Couture A; Cox J; Dahlfors M; David S; Dillman I; Dolfini R; Domingo-Pardo C; Dridi W; Duran I; Eleftheriadis C; Ferrant L; Ferrari A; Ferreira-Marques R; Frais-Koelbl H; Fujii K; Furman W; Goncalves I; González-Romero E; Goverdovski A; Gramegna F; Griesmayer E; Guerrero C; Gunsing F; Haas B; Haight R; Heil M; Herrera-Martinez A; Igashira M; Isaev S; Jericha E; Käppeler F; Kadi Y; Karadimos D; Karamanis D; Kerveno M; Ketlerov V; Koehler P; Konovalov V; Kossionides E; Krticka M; Lampoudis C; Leeb H; Lindote A; Lopes I; Lozano M; Lukic S; Marganiec J; Marques L; Marrone S; Martínez T; Massimi C; Mastinu P; Mengoni A; Milazzo PM; Moreau C; Mosconi M; Neves F; Oberhummer H; O'Brien S; Oshima M; Pancin J; Papachristodoulou C; Papadopoulos C; Paradela C; Patronis N; Pavlik A; Pavlopoulos P; Perrot L; Pigni MT; Plag R; Plompen A; Plukis A; Poch A; Pretel C; Quesada J; Rauscher T; Reifarth R; Rosetti M; Rubbia C; Rudolf G; Rullhusen P; Salgado J; Sarchiapone L; Savvidis I; Stephan C; Tagliente G; Tain JL; Tassan-Got L; Tavora L; Terlizzi R; Vannini G; Vaz P; Ventura A; Villamarin D; Vicente MC; Vlachoudis V; Vlastou R; Voss F; Walter S; Wendler H; Wiescher M; Wisshak K;
    Appl Radiat Isot; 2010; 68(4-5):643-6. PubMed ID: 20096595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron capture therapy beam design at Harwell.
    Constantine G
    Basic Life Sci; 1990; 54():71-82. PubMed ID: 2176459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended set of activation monitors for NCT beam characterization and spectral conditions of the beam after reactor fuel conversion.
    Marek M; Vins M; Lahodova Z; Viererbl L; Koleska M
    Appl Radiat Isot; 2014 Jun; 88():157-61. PubMed ID: 24369892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 meV proton-7Li reaction or from fission of 235U.
    Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Endo S; Hoshi M
    Phys Med Biol; 2001 Oct; 46(10):2681-95. PubMed ID: 11686282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative biological effectiveness and tolerance dose of fission neutrons in canine skin for a potential combination of neutron capture therapy and fast-neutron therapy.
    Kadosawa T; Ohashi F; Nishimura R; Sasaki N; Saito I; Wakabayashi H; Takeuchi A
    Radiat Res; 2003 Oct; 160(4):436-42. PubMed ID: 12971808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.
    Harrington BV
    Pigment Cell Res; 1989; 2(4):246-53. PubMed ID: 2798318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.