These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 12750054)
1. Effects of simulated thaw on xylem cavitation, residual embolism, spring dieback and shoot growth in yellow birch. Cox RM; Zhu XB Tree Physiol; 2003 Jun; 23(9):615-24. PubMed ID: 12750054 [TBL] [Abstract][Full Text] [Related]
2. Effects of xylem cavitation and freezing injury on dieback of yellow birch (Betula alleghaniensis) in relation to a simulated winter thaw. Zhu XB; Cox RM; Arp PA Tree Physiol; 2000 Apr; 20(8):541-547. PubMed ID: 12651435 [TBL] [Abstract][Full Text] [Related]
3. Development and recovery from winter embolism in silver birch: seasonal patterns and relationships with the phenological cycle in oceanic Scotland. Strati S; Patiño S; Slidders C; Cundall EP; Mencuccini M Tree Physiol; 2003 Jul; 23(10):663-73. PubMed ID: 12777239 [TBL] [Abstract][Full Text] [Related]
4. Effects of duration of a simulated winter thaw on dieback and xylem conductivity of Betula papyrifera. Cox RM; Malcolm JW Tree Physiol; 1997 Jun; 17(6):389-96. PubMed ID: 14759847 [TBL] [Abstract][Full Text] [Related]
5. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. Rodríguez-Calcerrada J; Li M; López R; Cano FJ; Oleksyn J; Atkin OK; Pita P; Aranda I; Gil L New Phytol; 2017 Jan; 213(2):597-610. PubMed ID: 27575435 [TBL] [Abstract][Full Text] [Related]
6. Let it snow! Winter conditions affect growth of birch seedlings during the following growing season. Domisch T; Martz F; Repo T; Rautio P Tree Physiol; 2019 Apr; 39(4):544-555. PubMed ID: 30517759 [TBL] [Abstract][Full Text] [Related]
7. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Hao GY; Wheeler JK; Holbrook NM; Goldstein G J Exp Bot; 2013 May; 64(8):2321-32. PubMed ID: 23585669 [TBL] [Abstract][Full Text] [Related]
8. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. Gaucher C; Gougeon S; Mauffette Y; Messier C Tree Physiol; 2005 Jan; 25(1):93-100. PubMed ID: 15519990 [TBL] [Abstract][Full Text] [Related]
9. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Mayr S; Schmid P; Laur J; Rosner S; Charra-Vaskou K; Dämon B; Hacke UG Plant Physiol; 2014 Apr; 164(4):1731-40. PubMed ID: 24521876 [TBL] [Abstract][Full Text] [Related]
10. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Arias NS; Scholz FG; Goldstein G; Bucci SJ Tree Physiol; 2017 Sep; 37(9):1251-1262. PubMed ID: 28633378 [TBL] [Abstract][Full Text] [Related]
11. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings. Wang AF; Roitto M; Sutinen S; Lehto T; Heinonen J; Zhang G; Repo T Tree Physiol; 2016 Jan; 36(1):86-98. PubMed ID: 26420790 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Cochard H; Lemoine D; Améglio T; Granier A Tree Physiol; 2001 Jan; 21(1):27-33. PubMed ID: 11260821 [TBL] [Abstract][Full Text] [Related]
13. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Améglio T; Bodet C; Lacointe A; Cochard H Tree Physiol; 2002 Dec; 22(17):1211-20. PubMed ID: 12464574 [TBL] [Abstract][Full Text] [Related]
14. Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Sparks JP; Campbell GS; Black AR Oecologia; 2001 May; 127(4):468-475. PubMed ID: 28547483 [TBL] [Abstract][Full Text] [Related]
15. Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates. Cordero RA; Nilsen ET Tree Physiol; 2002 Sep; 22(13):919-28. PubMed ID: 12204848 [TBL] [Abstract][Full Text] [Related]
16. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ. Christensen-Dalsgaard KK; Tyree MT Plant Cell Environ; 2014 May; 37(5):1074-85. PubMed ID: 24117494 [TBL] [Abstract][Full Text] [Related]
17. Water relations in silver birch during springtime: How is sap pressurised? Hölttä T; Dominguez Carrasco MDR; Salmon Y; Aalto J; Vanhatalo A; Bäck J; Lintunen A Plant Biol (Stuttg); 2018 Sep; 20(5):834-847. PubMed ID: 29732663 [TBL] [Abstract][Full Text] [Related]
18. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures. Ogasa M; Miki N; Yoshikawa K Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339 [TBL] [Abstract][Full Text] [Related]
19. Effects of winter temperatures on two birch (Betula) species. Miller-Rushing AJ; Primack RB Tree Physiol; 2008 Apr; 28(4):659-64. PubMed ID: 18244951 [TBL] [Abstract][Full Text] [Related]
20. Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline. Mayr S; Rothart B; Dämon B J Exp Bot; 2003 Nov; 54(392):2563-8. PubMed ID: 14512383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]