These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 12750470)
1. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Fan C; Wang S; Hong JW; Bazan GC; Plaxco KW; Heeger AJ Proc Natl Acad Sci U S A; 2003 May; 100(11):6297-301. PubMed ID: 12750470 [TBL] [Abstract][Full Text] [Related]
2. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Tian Z; Yu J; Wu C; Szymanski C; McNeill J Nanoscale; 2010 Oct; 2(10):1999-2011. PubMed ID: 20697652 [TBL] [Abstract][Full Text] [Related]
4. Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Jiang Y; McNeill J Chem Rev; 2017 Jan; 117(2):838-859. PubMed ID: 28029769 [TBL] [Abstract][Full Text] [Related]
5. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers. Guan Z; Polavarapu L; Xu QH Langmuir; 2010 Dec; 26(23):18020-3. PubMed ID: 21028762 [TBL] [Abstract][Full Text] [Related]
6. Microphase mechanism of "superquenching" of luminescent probes in aqueous solutions of DNA and some other polyelectrolytes. Kuzmin MG; Soboleva IV; Durandin NA; Lisitsyna ES; Kuzmin VA J Phys Chem B; 2014 Apr; 118(15):4245-52. PubMed ID: 24641485 [TBL] [Abstract][Full Text] [Related]
7. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Stobiecka M; Hepel M Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434 [TBL] [Abstract][Full Text] [Related]
8. Hyper-efficient quenching of a conjugated polyelectrolyte by dye-doped silica nanoparticles: better quenching in the nonaggregated state. Tan C; Xie Y; He X; Wang K; Jiang Y Langmuir; 2010 Feb; 26(3):1528-32. PubMed ID: 19924894 [TBL] [Abstract][Full Text] [Related]
9. Solvent-assisted optical modulation of FRET-induced fluorescence for efficient conjugated polymer-based DNA detection. Kang M; Nag OK; Hwang S; Kim I; Yang H; Kyhm K; Woo HY Phys Chem Chem Phys; 2010 Dec; 12(47):15482-9. PubMed ID: 20976320 [TBL] [Abstract][Full Text] [Related]
10. Superquenching as a detector for microsphere-based flow cytometric assays. Zeineldin R; Piyasena ME; Bergstedt TS; Sklar LA; Whitten D; Lopez GP Cytometry A; 2006 May; 69(5):335-41. PubMed ID: 16604535 [TBL] [Abstract][Full Text] [Related]
13. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer. Madsen M; Christensen RS; Krissanaprasit A; Bakke MR; Riber CF; Nielsen KS; Zelikin AN; Gothelf KV Chemistry; 2017 Aug; 23(44):10511-10515. PubMed ID: 28640936 [TBL] [Abstract][Full Text] [Related]
14. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. Saini S; Srinivas G; Bagchi B J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043 [TBL] [Abstract][Full Text] [Related]
18. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins. Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions. Xu QH; Gaylord BS; Wang S; Bazan GC; Moses D; Heeger AJ Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11634-9. PubMed ID: 15282375 [TBL] [Abstract][Full Text] [Related]
20. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. Gao F; Ye Q; Cui P; Zhang L J Agric Food Chem; 2012 May; 60(18):4550-8. PubMed ID: 22443279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]