BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12750596)

  • 21. Brachial artery characteristics and micro-vascular filtration capacity in rock climbers.
    Thompson EB; Farrow L; Hunt JE; Lewis MP; Ferguson RA
    Eur J Sport Sci; 2015; 15(4):296-304. PubMed ID: 25068834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation.
    Berry KL; Skyrme-Jones RA; Meredith IT
    Clin Sci (Lond); 2000 Oct; 99(4):261-7. PubMed ID: 10995590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of handgrip training and intermittent compression of upper arm veins on forearm vessels in patients with end-stage renal failure.
    Rus R; Ponikvar R; Kenda RB; Buturović-Ponikvar J
    Ther Apher Dial; 2005 Jun; 9(3):241-4. PubMed ID: 15966998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The association of homocysteine and related factors to brachial artery diameter and flow-mediated dilation.
    Wilson JB; Welsch M; Allen J; Thomson J; Tulley R; Lefevre M
    Metabolism; 2007 May; 56(5):641-8. PubMed ID: 17445539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of shear rate modulation on vascular function in humans.
    Tinken TM; Thijssen DH; Hopkins N; Black MA; Dawson EA; Minson CT; Newcomer SC; Laughlin MH; Cable NT; Green DJ
    Hypertension; 2009 Aug; 54(2):278-85. PubMed ID: 19546374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic run training improves brachial artery flow-mediated dilation.
    Libonati JR
    J Strength Cond Res; 2007 Nov; 21(4):1291-5. PubMed ID: 18076272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of disturbed blood flow during exercise on endothelial function: a time course analysis.
    Paiva FM; Vianna LC; Fernandes IA; Nóbrega AC; Lima RM
    Braz J Med Biol Res; 2016; 49(4):e5100. PubMed ID: 26909789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of muscle training on resting blood flow and forearm vessel diameter in patients with chronic renal failure.
    Kumar S; Seward J; Wilcox A; Torella F
    Br J Surg; 2010 Jun; 97(6):835-8. PubMed ID: 20309951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional changes in reactive hyperemic blood flow during exercise training: time-course adaptations.
    Alomari MA; Welsch MA
    Dyn Med; 2007 Jan; 6():1. PubMed ID: 17222342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to Exercise Training in Conduit Arteries and Cutaneous Microvessels in Humans: An Optical Coherence Tomography Study.
    Argarini R; Carter HH; Smith KJ; Naylor LH; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2021 Sep; 53(9):1945-1957. PubMed ID: 33731650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endothelial function of young healthy males following whole body resistance training.
    Rakobowchuk M; McGowan CL; de Groot PC; Hartman JW; Phillips SM; MacDonald MJ
    J Appl Physiol (1985); 2005 Jun; 98(6):2185-90. PubMed ID: 15677730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reliability of brachial artery flow-mediated dilatation measurement using ultrasound.
    Meirelles Cde M; Leite SP; Montenegro CA; Gomes PS
    Arq Bras Cardiol; 2007 Sep; 89(3):160-7, 176-83. PubMed ID: 17906817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of regional vascular adaptations to low load resistance training with blood flow restriction.
    Hunt JE; Galea D; Tufft G; Bunce D; Ferguson RA
    J Appl Physiol (1985); 2013 Aug; 115(3):403-11. PubMed ID: 23703116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brachial artery blood flow during submaximal isometric contraction of the biceps brachii and triceps brachii in humans: a preliminary observation.
    Ledro G; Turrina A; Picelli A; Stecco C; Principe F; Cacciatori C; Smania N
    J Bodyw Mov Ther; 2013 Apr; 17(2):165-8. PubMed ID: 23561862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults.
    Casey DP; Schneider AC; Ueda K
    Eur J Appl Physiol; 2016 Oct; 116(10):1931-40. PubMed ID: 27497720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gender differences in brachial blood flow during fatiguing intermittent handgrip.
    Saito Y; Iemitsu M; Otsuki T; Maeda S; Ajisaka R
    Med Sci Sports Exerc; 2008 Apr; 40(4):684-90. PubMed ID: 18317376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heart rate responses at onset of contraction.
    Hachiya T; Blaber AP; Aizawa S; Saito M
    Int J Sports Med; 2008 Aug; 29(8):646-51. PubMed ID: 18080950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelial function in highly endurance-trained men: effects of acute exercise.
    Rognmo O; Bjørnstad TH; Kahrs C; Tjønna AE; Bye A; Haram PM; Stølen T; Slørdahl SA; Wisløff U
    J Strength Cond Res; 2008 Mar; 22(2):535-42. PubMed ID: 18550971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.