These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532 [TBL] [Abstract][Full Text] [Related]
3. Phosphate transporters of the SLC20 and SLC34 families. Forster IC; Hernando N; Biber J; Murer H Mol Aspects Med; 2013; 34(2-3):386-95. PubMed ID: 23506879 [TBL] [Abstract][Full Text] [Related]
4. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Collins JF; Bai L; Ghishan FK Pflugers Arch; 2004 Feb; 447(5):647-52. PubMed ID: 12759754 [TBL] [Abstract][Full Text] [Related]
5. Proximal tubular handling of phosphate: A molecular perspective. Forster IC; Hernando N; Biber J; Murer H Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105 [TBL] [Abstract][Full Text] [Related]
6. The SLC34 family of sodium-dependent phosphate transporters. Wagner CA; Hernando N; Forster IC; Biber J Pflugers Arch; 2014 Jan; 466(1):139-53. PubMed ID: 24352629 [TBL] [Abstract][Full Text] [Related]
7. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Radanovic T; Wagner CA; Murer H; Biber J Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623 [TBL] [Abstract][Full Text] [Related]
8. Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Forster IC; Hernando N; Biber J; Murer H Curr Top Membr; 2012; 70():313-56. PubMed ID: 23177991 [TBL] [Abstract][Full Text] [Related]
9. Phosphate transporters and their function. Biber J; Hernando N; Forster I Annu Rev Physiol; 2013; 75():535-50. PubMed ID: 23398154 [TBL] [Abstract][Full Text] [Related]
10. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate. Lundquist P; Murer H; Biber J Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099 [TBL] [Abstract][Full Text] [Related]
11. Asymmetrical targeting of type II Na-P(i) cotransporters in renal and intestinal epithelial cell lines. Hernando N; Sheikh S; Karim-Jimenez Z; Galliker H; Forgo J; Biber J; Murer H Am J Physiol Renal Physiol; 2000 Mar; 278(3):F361-8. PubMed ID: 10710539 [TBL] [Abstract][Full Text] [Related]
12. Amino acids involved in sodium interaction of murine type II Na(+)-P(i) cotransporters expressed in Xenopus oocytes. de La Horra C; Hernando N; Forster I; Biber J; Murer H J Physiol; 2001 Mar; 531(Pt 2):383-91. PubMed ID: 11230511 [TBL] [Abstract][Full Text] [Related]
14. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054 [TBL] [Abstract][Full Text] [Related]
15. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864 [TBL] [Abstract][Full Text] [Related]
16. Expression of type II Na-P(i) cotransporter in alveolar type II cells. Traebert M; Hattenhauer O; Murer H; Kaissling B; Biber J Am J Physiol; 1999 Nov; 277(5):L868-73. PubMed ID: 10564169 [TBL] [Abstract][Full Text] [Related]
17. Upregulation of the Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb by B-RAF. Pakladok T; Hosseinzadeh Z; Lebedeva A; Alesutan I; Lang F J Membr Biol; 2014 Feb; 247(2):137-45. PubMed ID: 24258620 [TBL] [Abstract][Full Text] [Related]
18. Expression and regulation of the renal Na/phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1. Capuano P; Bacic D; Stange G; Hernando N; Kaissling B; Pal R; Kocher O; Biber J; Wagner CA; Murer H Pflugers Arch; 2005 Jan; 449(4):392-402. PubMed ID: 15517343 [TBL] [Abstract][Full Text] [Related]
19. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430 [TBL] [Abstract][Full Text] [Related]
20. The Role of Sodium-Dependent Phosphate Transporter in Phosphate Homeostasis. Segawa H; Shiozaki Y; Kaneko I; Miyamoto K J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S119-21. PubMed ID: 26598821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]