These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12751287)

  • 1. The use of sequential MR image sets for determining tibiofemoral motion: reliability of coordinate systems and accuracy of motion tracking algorithm.
    Lerner AL; Tamez-Pena JG; Houck JR; Yao J; Harmon HL; Salo AD; Totterman SM
    J Biomech Eng; 2003 Apr; 125(2):246-53. PubMed ID: 12751287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling.
    Kaiser J; Bradford R; Johnson K; Wieben O; Thelen DG
    Magn Reson Med; 2013 May; 69(5):1310-6. PubMed ID: 22693040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics.
    Lansdown DA; Zaid M; Pedoia V; Subburaj K; Souza R; Benjamin C; Li X
    J Magn Reson Imaging; 2015 Aug; 42(2):533-8. PubMed ID: 25545617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 3D-MR image registration to monitor diseases around the knee joint.
    Takao M; Sugano N; Nishii T; Miki H; Koyama T; Masumoto J; Sato Y; Tamura S; Yoshikawa H
    J Magn Reson Imaging; 2005 Nov; 22(5):656-60. PubMed ID: 16215970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
    Sangeux M; Marin F; Charleux F; Dürselen L; Ho Ba Tho MC
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):984-91. PubMed ID: 16844273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reproducible method for studying three-dimensional knee kinematics.
    Hagemeister N; Parent G; Van de Putte M; St-Onge N; Duval N; de Guise J
    J Biomech; 2005 Sep; 38(9):1926-31. PubMed ID: 15996675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.
    Johnson TS; Andriacchi TP; Erdman AG
    Proc Inst Mech Eng H; 2004; 218(2):89-100. PubMed ID: 15116896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data.
    Barrance PJ; Williams GN; Novotny JE; Buchanan TS
    J Biomech Eng; 2005 Oct; 127(5):829-37. PubMed ID: 16248313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anteroposterior and rotational movement of femur during knee flexion.
    Todo S; Kadoya Y; Moilanen T; Kobayashi A; Yamano Y; Iwaki H; Freeman MA
    Clin Orthop Relat Res; 1999 May; (362):162-70. PubMed ID: 10335295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.
    Chen HC; Jou IM; Wang CK; Su FC; Sun YN
    Med Phys; 2010 Jun; 37(6):2670-82. PubMed ID: 20632578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting.
    Spottiswoode BS; Zhong X; Hess AT; Kramer CM; Meintjes EM; Mayosi BM; Epstein FH
    IEEE Trans Med Imaging; 2007 Jan; 26(1):15-30. PubMed ID: 17243581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral anatomical frame: assessment of various definitions.
    Della Croce U; Camomilla V; Leardini A; Cappozzo A
    Med Eng Phys; 2003 Jun; 25(5):425-31. PubMed ID: 12711241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers.
    Victor J; Van Doninck D; Labey L; Van Glabbeek F; Parizel P; Bellemans J
    J Bone Joint Surg Br; 2009 May; 91(5):683-90. PubMed ID: 19407308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.