These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12751290)

  • 1. Constitutive modeling of porcine coronary arteries using designed experiments.
    Dixon SA; Heikes RG; Vito RP
    J Biomech Eng; 2003 Apr; 125(2):274-9. PubMed ID: 12751290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of porcine coronary arteries ex vivo employing impedance planimetry: a new intravascular technique.
    Frøbert O; Gregersen H; Bagger JP
    Ann Biomed Eng; 1996; 24(1):148-55. PubMed ID: 8669712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in Stress Forces and Geometry between Left and Right Coronary Artery: A Pathophysiological Aspect of Atherosclerosis Heterogeneity.
    Katranas SA; Kelekis AL; Antoniadis AP; Ziakas AG; Giannoglou GD
    Hellenic J Cardiol; 2015; 56(3):217-23. PubMed ID: 26021243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive mechanical properties of porcine left circumflex artery and its mathematical description.
    Carboni M; Desch GW; Weizsäcker HW
    Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validation of a generalized Hooke's law for coronary arteries.
    Wang C; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H66-73. PubMed ID: 17933971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimentally validated microstructural 3D constitutive model of coronary arterial media.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Mar; 133(3):031007. PubMed ID: 21303183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between zero-stress state and branching order of porcine left coronary arterial tree.
    Frøbert O; Gregersen H; Bjerre J; Bagger JP; Kassab GS
    Am J Physiol; 1998 Dec; 275(6):H2283-90. PubMed ID: 9843830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries.
    Heaps CL; Parker JL; Sturek M; Bowles DK
    J Appl Physiol (1985); 2004 Jul; 97(1):310-6. PubMed ID: 14978011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic analysis of sequential graft from right coronary system to left coronary system.
    Wang W; Mao B; Wang H; Geng X; Zhao X; Zhang H; Xie J; Zhao Z; Lian B; Liu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):132. PubMed ID: 28155686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of culprit coronary lesion location in pre-hospital 12-lead ECG.
    Gregg RE; Babaeizadeh S
    J Electrocardiol; 2014; 47(6):890-4. PubMed ID: 25194873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary sinus flow measured by pulsed Doppler ultrasound is a powerful indicator of coronary blood supply- a pig heart in vitro study.
    Zheng XZ; Wu J; Hua J
    Med Ultrason; 2016 Jun; 18(2):190-4. PubMed ID: 27239653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal bypass graft design for left anterior descending and diagonal territory in multivessel coronary disease.
    Koyama S; Itatani K; Yamamoto T; Miyazaki S; Kitamura T; Taketani T; Ono M; Miyaji K
    Interact Cardiovasc Thorac Surg; 2014 Sep; 19(3):406-13. PubMed ID: 24893870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic coronary blood flow patterns in dogs vs. pigs: an acute ischemic heart study.
    Ootaki Y; Ootaki C; Kamohara K; Akiyama M; Zahr F; Kopcak MW; Dessoffy R; Fukamachi K
    Med Sci Monit; 2008 Oct; 14(10):BR193-7. PubMed ID: 18830182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors.
    van Andel CJ; Pistecky PV; Borst C
    Ann Thorac Surg; 2003 Jul; 76(1):58-64; discussion 64-5. PubMed ID: 12842513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear modulus of porcine coronary artery in reference to a new strain measure.
    Zhang W; Lu X; Kassab GS
    Biomaterials; 2007 Nov; 28(31):4733-8. PubMed ID: 17669488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis.
    Ding Z; Friedman MH
    J Biomech Eng; 2000 Oct; 122(5):488-92. PubMed ID: 11091949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model.
    van der Horst A; van den Broek CN; van de Vosse FN; Rutten MC
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):533-42. PubMed ID: 21750906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correspondence between left ventricular 17 myocardial segments and coronary arteries.
    Pereztol-Valdés O; Candell-Riera J; Santana-Boado C; Angel J; Aguadé-Bruix S; Castell-Conesa J; Garcia EV; Soler-Soler J
    Eur Heart J; 2005 Dec; 26(24):2637-43. PubMed ID: 16183694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro.
    Carmines DV; McElhaney JH; Stack R
    J Biomech; 1991; 24(10):899-906. PubMed ID: 1744148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter-dependent axial prestretch of porcine coronary arteries and veins.
    Guo X; Liu Y; Kassab GS
    J Appl Physiol (1985); 2012 Mar; 112(6):982-9. PubMed ID: 22162531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.