These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 12752198)
1. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. De Oliveira JF; De Aguiar PF; Rossi AM; Soares GA Artif Organs; 2003 May; 27(5):406-11. PubMed ID: 12752198 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
3. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Nilen RW; Richter PW J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. França R; Samani TD; Bayade G; Yahia L; Sacher E J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717 [TBL] [Abstract][Full Text] [Related]
5. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite. Qian J; Kang Y; Zhang W; Li Z J Mater Sci Mater Med; 2008 Nov; 19(11):3373-83. PubMed ID: 18545942 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Li B; Chen X; Guo B; Wang X; Fan H; Zhang X Acta Biomater; 2009 Jan; 5(1):134-43. PubMed ID: 18799376 [TBL] [Abstract][Full Text] [Related]
7. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering. Ding X; Li A; Yang F; Sun K; Sun X J Biomater Appl; 2020 Apr; 34(9):1294-1299. PubMed ID: 32028822 [No Abstract] [Full Text] [Related]
8. Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD. de Wild M; Amacher F; Bradbury CR; Molenberg A J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):546-53. PubMed ID: 25952407 [TBL] [Abstract][Full Text] [Related]
9. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration. Weinand WR; Cruz JA; Medina AN; Lima WM; Sato F; da Silva Palacios R; Gibin MS; Volnistem EA; Rosso JM; Santos IA; Rohling JH; Bento AC; Baesso ML; da Silva CG; Dos Santos EX; Scatolim DB; Gavazzoni A; Queiroz AF; Companhoni MVP; Nakamura TU; Hernandes L; Bonadio TGM; Miranda LCM Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121407. PubMed ID: 35636138 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite formation on porous ceramics of alpha-tricalcium phosphate in a simulated body fluid. Uchino T; Yamaguchi K; Suzuki I; Kamitakahara M; Otsuka M; Ohtsuki C J Mater Sci Mater Med; 2010 Jun; 21(6):1921-6. PubMed ID: 20224935 [TBL] [Abstract][Full Text] [Related]
12. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. Kong YM; Kim HE; Kim HW J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029 [TBL] [Abstract][Full Text] [Related]
13. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
14. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. Hu J; Yang Z; Zhou Y; Liu Y; Li K; Lu H J Mater Sci Mater Med; 2015 Nov; 26(11):257. PubMed ID: 26449447 [TBL] [Abstract][Full Text] [Related]
15. The properties of sintered calcium phosphate with [Ca]/[P] = 1.50. Hung IM; Shih WJ; Hon MH; Wang MC Int J Mol Sci; 2012 Oct; 13(10):13569-86. PubMed ID: 23202968 [TBL] [Abstract][Full Text] [Related]
16. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356 [TBL] [Abstract][Full Text] [Related]
17. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Morimoto S; Anada T; Honda Y; Suzuki O Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587 [TBL] [Abstract][Full Text] [Related]
18. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313 [TBL] [Abstract][Full Text] [Related]
19. Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics. Manjubala I; Sampath Kumar TS Biomaterials; 2000 Oct; 21(19):1995-2002. PubMed ID: 10941921 [TBL] [Abstract][Full Text] [Related]
20. In vitro stability of biphasic calcium phosphate ceramics. Kohri M; Miki K; Waite DE; Nakajima H; Okabe T Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]