These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12752501)

  • 1. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae.
    Kominami T; Takata H
    Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus.
    Tokuoka M; Setoguchi C; Kominami T
    Dev Growth Differ; 2002 Jun; 44(3):239-50. PubMed ID: 12060073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo.
    Takata H; Kominami T; Masui M
    Zoolog Sci; 2002 Mar; 19(3):299-307. PubMed ID: 12125928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Biol; 1988 May; 127(1):187-96. PubMed ID: 3360211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis.
    Kominami T; Takata H
    Dev Growth Differ; 2002 Apr; 44(2):113-25. PubMed ID: 11940098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromere cell fates during sea urchin development.
    Cameron RA; Fraser SE; Britten RJ; Davidson EH
    Development; 1991 Dec; 113(4):1085-91. PubMed ID: 1811928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus.
    Ohguro Y; Takata H; Kominami T
    Dev Growth Differ; 2011 Jan; 53(1):110-23. PubMed ID: 21261616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Tsuchimoto J; Kiyomoto M; Amemiya S; Yamaguchi M
    Dev Biol; 2008 Feb; 314(2):433-42. PubMed ID: 18166171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.
    Satoh K; Kominami T
    Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
    Sweet HC; Gehring M; Ettensohn CA
    Development; 2002 Apr; 129(8):1945-55. PubMed ID: 11934860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of early developmental events in embryos of a tropical sea urchin Echinometra mathaei.
    Kominami T; Takata H
    Zoolog Sci; 2003 May; 20(5):617-26. PubMed ID: 12777832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary mesenchyme cell patterning during the early stages following ingression.
    Peterson RE; McClay DR
    Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.