BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12752501)

  • 1. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae.
    Kominami T; Takata H
    Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus.
    Tokuoka M; Setoguchi C; Kominami T
    Dev Growth Differ; 2002 Jun; 44(3):239-50. PubMed ID: 12060073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo.
    Takata H; Kominami T; Masui M
    Zoolog Sci; 2002 Mar; 19(3):299-307. PubMed ID: 12125928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Biol; 1988 May; 127(1):187-96. PubMed ID: 3360211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis.
    Kominami T; Takata H
    Dev Growth Differ; 2002 Apr; 44(2):113-25. PubMed ID: 11940098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromere cell fates during sea urchin development.
    Cameron RA; Fraser SE; Britten RJ; Davidson EH
    Development; 1991 Dec; 113(4):1085-91. PubMed ID: 1811928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus.
    Ohguro Y; Takata H; Kominami T
    Dev Growth Differ; 2011 Jan; 53(1):110-23. PubMed ID: 21261616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Tsuchimoto J; Kiyomoto M; Amemiya S; Yamaguchi M
    Dev Biol; 2008 Feb; 314(2):433-42. PubMed ID: 18166171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.
    Satoh K; Kominami T
    Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
    Sweet HC; Gehring M; Ettensohn CA
    Development; 2002 Apr; 129(8):1945-55. PubMed ID: 11934860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of early developmental events in embryos of a tropical sea urchin Echinometra mathaei.
    Kominami T; Takata H
    Zoolog Sci; 2003 May; 20(5):617-26. PubMed ID: 12777832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary mesenchyme cell patterning during the early stages following ingression.
    Peterson RE; McClay DR
    Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.