BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 12753395)

  • 1. The IFPCS presidential lecture: a chemist's view of melanogenesis.
    Ito S;
    Pigment Cell Res; 2003 Jun; 16(3):230-6. PubMed ID: 12753395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry of mixed melanogenesis--pivotal roles of dopaquinone.
    Ito S; Wakamatsu K
    Photochem Photobiol; 2008; 84(3):582-92. PubMed ID: 18435614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis.
    Ito S; Wakamatsu K; Ozeki H
    Pigment Cell Res; 2000; 13 Suppl 8():103-9. PubMed ID: 11041366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin.
    Lamoreux ML; Wakamatsu K; Ito S
    Pigment Cell Res; 2001 Feb; 14(1):23-31. PubMed ID: 11277491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole.
    Aroca P; Solano F; Salinas C; García-Borrón JC; Lozano JA
    Eur J Biochem; 1992 Aug; 208(1):155-63. PubMed ID: 1511683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of melanin monomers, dihydroxyindole-2-carboxylic acid (DHICA) and dihydroxyindole (DHI) on mammalian tyrosinase, with a special reference to the role of DHICA/DHI ratio in melanogenesis.
    Wilczek A; Mishima Y
    Pigment Cell Res; 1995 Apr; 8(2):105-12. PubMed ID: 7659677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.
    Rzepka Z; Buszman E; Beberok A; Wrześniok D
    Postepy Hig Med Dosw (Online); 2016 Jun; 70(0):695-708. PubMed ID: 27356601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis.
    Wakamatsu K; Zippin JH; Ito S
    Pigment Cell Melanoma Res; 2021 Jul; 34(4):730-747. PubMed ID: 33751833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopachrome tautomerase decreases the binding of indolic melanogenesis intermediates to proteins.
    Salinas C; García-Borrón JC; Solano F; Lozano JA
    Biochim Biophys Acta; 1994 Jan; 1204(1):53-60. PubMed ID: 8305475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pheomelanogenesis is promoted at a weakly acidic pH.
    Wakamatsu K; Nagao A; Watanabe M; Nakao K; Ito S
    Pigment Cell Melanoma Res; 2017 May; 30(3):372-377. PubMed ID: 28271633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral pH and copper ions promote eumelanogenesis after the dopachrome stage.
    Ito S; Suzuki N; Takebayashi S; Commo S; Wakamatsu K
    Pigment Cell Melanoma Res; 2013 Nov; 26(6):817-25. PubMed ID: 23844795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect cuticular melanins are distinctly different from those of mammalian epidermal melanins.
    Barek H; Sugumaran M; Ito S; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 May; 31(3):384-392. PubMed ID: 29160957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes.
    Lassalle MW; Igarashi S; Sasaki M; Wakamatsu K; Ito S; Horikoshi T
    Pigment Cell Res; 2003 Feb; 16(1):81-4. PubMed ID: 12519129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance liquid chromatography (HPLC) analysis of eu- and pheomelanin in melanogenesis control.
    Ito S
    J Invest Dermatol; 1993 Feb; 100(2 Suppl):166S-171S. PubMed ID: 8433004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of dopachrome tautomerization into 5,6-dihydroxyindole-2-carboxylic acid catalyzed by Cu(II) based on quantum chemical calculations.
    Kishida R; Saputro AG; Kasai H
    Biochim Biophys Acta; 2015 Feb; 1850(2):281-6. PubMed ID: 25450182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse radiolysis studies of ortho-quinone chemistry relevant to melanogenesis.
    Land EJ; Ramsden CA; Riley PA
    J Photochem Photobiol B; 2001 Nov; 64(2-3):123-35. PubMed ID: 11744399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess tyrosine stimulates eumelanin and pheomelanin synthesis in cultured slaty melanocytes from neonatal mouse epidermis.
    Hirobe T; Wakamatsu K; Ito S
    Zoolog Sci; 2007 Mar; 24(3):209-17. PubMed ID: 17551240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation.
    Jiang S; Liu XM; Dai X; Zhou Q; Lei TC; Beermann F; Wakamatsu K; Xu SZ
    Free Radic Biol Med; 2010 May; 48(9):1144-51. PubMed ID: 20123016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Melanogenesis by Some Well-Known Polyphenolics: A Review.
    Orhan IE; Deniz FSS
    Curr Pharm Biotechnol; 2021; 22(11):1412-1423. PubMed ID: 33308130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole.
    Orlow SJ; Osber MP; Pawelek JM
    Pigment Cell Res; 1992 Sep; 5(3):113-21. PubMed ID: 1409448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.