These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 12753922)

  • 1. Oxidation of nuclear thioredoxin during oxidative stress.
    Watson WH; Jones DP
    FEBS Lett; 2003 May; 543(1-3):144-7. PubMed ID: 12753922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes.
    Dardalhon M; Kumar C; Iraqui I; Vernis L; Kienda G; Banach-Latapy A; He T; Chanet R; Faye G; Outten CE; Huang ME
    Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2254-65. PubMed ID: 22561702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mouse model for the identification of thioredoxin-1 protein interactions.
    Booze ML; Hansen JM; Vitiello PF
    Free Radic Biol Med; 2016 Oct; 99():533-543. PubMed ID: 27639450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development.
    Monteiro HP; Ogata FT; Stern A
    Biomed J; 2017 Aug; 40(4):189-199. PubMed ID: 28918907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.
    Calderón A; Ortiz-Espín A; Iglesias-Fernández R; Carbonero P; Pallardó FV; Sevilla F; Jiménez A
    Redox Biol; 2017 Apr; 11():688-700. PubMed ID: 28183062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of Cisplatin with Thioredoxin-1 Regulate Intracellular Redox Homeostasis.
    Wang S; Yuan S; Hu H; Zhang J; Cao K; Wang Y; Liu Y
    Inorg Chem; 2024 Jun; 63(25):11779-11787. PubMed ID: 38850241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulatory mechanism of transnitrosylation by thioredoxin.
    Wu C; Liu T; Chen W; Oka S; Fu C; Jain MR; Parrott AM; Baykal AT; Sadoshima J; Li H
    Mol Cell Proteomics; 2010 Oct; 9(10):2262-75. PubMed ID: 20660346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome.
    Andersen KM; Madsen L; Prag S; Johnsen AH; Semple CA; Hendil KB; Hartmann-Petersen R
    J Biol Chem; 2009 May; 284(22):15246-54. PubMed ID: 19349277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Probing for Chemical Information of Oxidative Stress.
    Kim E; Winkler TE; Kitchen C; Kang M; Banis G; Bentley WE; Kelly DL; Ghodssi R; Payne GF
    Anal Chem; 2017 Feb; 89(3):1583-1592. PubMed ID: 28035805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Nucleotides, Thiols and O
    Bettendorff L
    Antioxidants (Basel); 2022 Sep; 11(10):. PubMed ID: 36290600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Management of Reactive Oxygen Species.
    Napolitano G; Fasciolo G; Venditti P
    Antioxidants (Basel); 2021 Nov; 10(11):. PubMed ID: 34829696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can thiol-based redox systems be utilized as parts for synthetic biology applications?
    Pillay CS; John N
    Redox Rep; 2021 Dec; 26(1):147-159. PubMed ID: 34378494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular Sources of ROS/H
    Konno T; Melo EP; Chambers JE; Avezov E
    Cells; 2021 Jan; 10(2):. PubMed ID: 33504070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision Redox: The Key for Antioxidant Pharmacology.
    Meng J; Lv Z; Zhang Y; Wang Y; Qiao X; Sun C; Chen Y; Guo M; Han W; Ye A; Xie T; Chu B; Shi C; Yang S; Chen C
    Antioxid Redox Signal; 2021 May; 34(14):1069-1082. PubMed ID: 33270507
    [No Abstract]   [Full Text] [Related]  

  • 15. Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts.
    Zheng Y; Merchant ML; Burke TJ; Ritzenthaler JD; Li M; Gaweda AE; Benz FW; Roman J; Watson WH
    Oxid Med Cell Longev; 2020; 2020():2468986. PubMed ID: 32587657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Redox Theory of Development.
    Hansen JM; Jones DP; Harris C
    Antioxid Redox Signal; 2020 Apr; 32(10):715-740. PubMed ID: 31891515
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity.
    Zhang Y; Lee JH; Paull TT; Gehrke S; D'Alessandro A; Dou Q; Gladyshev VN; Schroeder EA; Steyl SK; Christian BE; Shadel GS
    Sci Signal; 2018 Jul; 11(538):. PubMed ID: 29991649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism.
    Rivet CA; Kniss-James AS; Gran MA; Potnis A; Hill A; Lu H; Kemp ML
    PLoS One; 2016; 11(8):e0159248. PubMed ID: 27526200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer.
    Jones DP
    Arch Biochem Biophys; 2016 Apr; 595():13-8. PubMed ID: 27095208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in Antioxidant Genes and Male Infertility.
    Yu B; Huang Z
    Biomed Res Int; 2015; 2015():513196. PubMed ID: 26618172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.