These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 12753922)
1. Oxidation of nuclear thioredoxin during oxidative stress. Watson WH; Jones DP FEBS Lett; 2003 May; 543(1-3):144-7. PubMed ID: 12753922 [TBL] [Abstract][Full Text] [Related]
2. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Go YM; Ziegler TR; Johnson JM; Gu L; Hansen JM; Jones DP Free Radic Biol Med; 2007 Feb; 42(3):363-70. PubMed ID: 17210449 [TBL] [Abstract][Full Text] [Related]
3. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. Watson WH; Pohl J; Montfort WR; Stuchlik O; Reed MS; Powis G; Jones DP J Biol Chem; 2003 Aug; 278(35):33408-15. PubMed ID: 12816947 [TBL] [Abstract][Full Text] [Related]
4. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Hansen JM; Zhang H; Jones DP Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887 [TBL] [Abstract][Full Text] [Related]
5. Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Halvey PJ; Hansen JM; Johnson JM; Go YM; Samali A; Jones DP Antioxid Redox Signal; 2007 Jul; 9(7):807-16. PubMed ID: 17508907 [TBL] [Abstract][Full Text] [Related]
6. Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures. Spielberger JC; Moody AD; Watson WH J Cell Biochem; 2008 Aug; 104(5):1879-89. PubMed ID: 18384140 [TBL] [Abstract][Full Text] [Related]
7. Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides. Feng X; Sun W; Kong L; Gao H Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444207 [TBL] [Abstract][Full Text] [Related]
8. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. García-Giménez JL; Seco-Cervera M; Aguado C; Romá-Mateo C; Dasí F; Priego S; Markovic J; Knecht E; Sanz P; Pallardó FV Free Radic Biol Med; 2013 Dec; 65():347-359. PubMed ID: 23850970 [TBL] [Abstract][Full Text] [Related]
9. Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei. Go YM; Son DJ; Park H; Orr M; Hao L; Takabe W; Kumar S; Kang DW; Kim CW; Jo H; Jones DP PLoS One; 2014; 9(9):e108346. PubMed ID: 25265386 [TBL] [Abstract][Full Text] [Related]
10. Thioredoxin 1 as a subcellular biomarker of redox imbalance in human prostate cancer progression. Shan W; Zhong W; Zhao R; Oberley TD Free Radic Biol Med; 2010 Dec; 49(12):2078-87. PubMed ID: 20955789 [TBL] [Abstract][Full Text] [Related]
11. Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62. Wang X; Ling S; Zhao D; Sun Q; Li Q; Wu F; Nie J; Qu L; Wang B; Shen X; Bai Y; Li Y; Li Y Antioxid Redox Signal; 2010 Sep; 13(5):565-73. PubMed ID: 20218863 [TBL] [Abstract][Full Text] [Related]
12. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle. Dimauro I; Pearson T; Caporossi D; Jackson MJ Free Radic Biol Med; 2012 Dec; 53(11):2017-27. PubMed ID: 23022873 [TBL] [Abstract][Full Text] [Related]
13. Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1. Go YM; Kang SM; Roede JR; Orr M; Jones DP PLoS One; 2011 Apr; 6(4):e18918. PubMed ID: 21526215 [TBL] [Abstract][Full Text] [Related]
14. Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Go YM; Orr M; Jones DP Toxicol Sci; 2013 Jan; 131(1):84-94. PubMed ID: 22961094 [TBL] [Abstract][Full Text] [Related]
15. Thioredoxin system as a gatekeeper in caspase-6 activation and nuclear lamina integrity: Implications for Alzheimer's disease. Islam MI; Nagakannan P; Ogungbola O; Djordjevic J; Albensi BC; Eftekharpour E Free Radic Biol Med; 2019 Apr; 134():567-580. PubMed ID: 30769159 [TBL] [Abstract][Full Text] [Related]
16. Altered thioredoxin subcellular localization and redox status in MCF-7 cells following 1,25-dihydroxyvitamin D3 treatment. Byrne BM; Welsh J J Steroid Biochem Mol Biol; 2005 Oct; 97(1-2):57-64. PubMed ID: 16061374 [TBL] [Abstract][Full Text] [Related]
17. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Trotter EW; Grant CM Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801 [TBL] [Abstract][Full Text] [Related]
18. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Dardalhon M; Kumar C; Iraqui I; Vernis L; Kienda G; Banach-Latapy A; He T; Chanet R; Faye G; Outten CE; Huang ME Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2254-65. PubMed ID: 22561702 [TBL] [Abstract][Full Text] [Related]
19. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. Kylarova S; Kosek D; Petrvalska O; Psenakova K; Man P; Vecer J; Herman P; Obsilova V; Obsil T FEBS J; 2016 Oct; 283(20):3821-3838. PubMed ID: 27588831 [TBL] [Abstract][Full Text] [Related]
20. Redox control systems in the nucleus: mechanisms and functions. Go YM; Jones DP Antioxid Redox Signal; 2010 Aug; 13(4):489-509. PubMed ID: 20210649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]