These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 12754222)
1. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. Willows RD; Lake V; Roberts TH; Beale SI J Bacteriol; 2003 Jun; 185(11):3249-58. PubMed ID: 12754222 [TBL] [Abstract][Full Text] [Related]
2. Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. Willows RD; Beale SI J Biol Chem; 1998 Dec; 273(51):34206-13. PubMed ID: 9852082 [TBL] [Abstract][Full Text] [Related]
3. BchJ and BchM interact in a 1 : 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Sawicki A; Willows RD FEBS J; 2010 Nov; 277(22):4709-21. PubMed ID: 20955518 [TBL] [Abstract][Full Text] [Related]
4. Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex. Sawicki A; Willows RD J Biol Chem; 2008 Nov; 283(46):31294-302. PubMed ID: 18790730 [TBL] [Abstract][Full Text] [Related]
5. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Willows RD; Gibson LC; Kanangara CG; Hunter CN; von Wettstein D Eur J Biochem; 1996 Jan; 235(1-2):438-43. PubMed ID: 8631364 [TBL] [Abstract][Full Text] [Related]
7. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. Masuda T; Inoue K; Masuda M; Nagayama M; Tamaki A; Ohta H; Shimada H; Takamiya K J Biol Chem; 1999 Nov; 274(47):33594-600. PubMed ID: 10559247 [TBL] [Abstract][Full Text] [Related]
8. Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit. Sirijovski N; Lundqvist J; Rosenbäck M; Elmlund H; Al-Karadaghi S; Willows RD; Hansson M J Biol Chem; 2008 Apr; 283(17):11652-60. PubMed ID: 18263581 [TBL] [Abstract][Full Text] [Related]
9. Characterization of three homologs of the large subunit of the magnesium chelatase from Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX methyltransferase. Johnson ET; Schmidt-Dannert C J Biol Chem; 2008 Oct; 283(41):27776-27784. PubMed ID: 18693239 [TBL] [Abstract][Full Text] [Related]
10. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Gibson LC; Willows RD; Kannangara CG; von Wettstein D; Hunter CN Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1941-4. PubMed ID: 7892204 [TBL] [Abstract][Full Text] [Related]
11. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861 [TBL] [Abstract][Full Text] [Related]
12. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Hansson A; Willows RD; Roberts TH; Hansson M Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13944-9. PubMed ID: 12357035 [TBL] [Abstract][Full Text] [Related]
13. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Gibson LC; Jensen PE; Hunter CN Biochem J; 1999 Jan; 337 ( Pt 2)(Pt 2):243-51. PubMed ID: 9882621 [TBL] [Abstract][Full Text] [Related]
14. ATPases and phosphate exchange activities in magnesium chelatase subunits of Rhodobacter sphaeroides. Hansson M; Kannangara CG Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13351-6. PubMed ID: 9371849 [TBL] [Abstract][Full Text] [Related]
15. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Papenbrock J; Gräfe S; Kruse E; Hänel F; Grimm B Plant J; 1997 Nov; 12(5):981-90. PubMed ID: 9418040 [TBL] [Abstract][Full Text] [Related]
16. Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. Bollivar DW; Jiang ZY; Bauer CE; Beale SI J Bacteriol; 1994 Sep; 176(17):5290-6. PubMed ID: 8071204 [TBL] [Abstract][Full Text] [Related]
17. Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. Hinchigeri SB; Hundle B; Richards WR FEBS Lett; 1997 May; 407(3):337-42. PubMed ID: 9175880 [TBL] [Abstract][Full Text] [Related]
18. PufQ regulates porphyrin flux at the haem/bacteriochlorophyll branchpoint of tetrapyrrole biosynthesis via interactions with ferrochelatase. Chidgey JW; Jackson PJ; Dickman MJ; Hunter CN Mol Microbiol; 2017 Dec; 106(6):961-975. PubMed ID: 29030914 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Karger GA; Reid JD; Hunter CN Biochemistry; 2001 Aug; 40(31):9291-9. PubMed ID: 11478896 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum. Gomez Maqueo Chew A; Frigaard NU; Bryant DA Photosynth Res; 2009 Jul; 101(1):21-34. PubMed ID: 19568953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]