These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 12754239)
1. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. Palmer RJ; Gordon SM; Cisar JO; Kolenbrander PE J Bacteriol; 2003 Jun; 185(11):3400-9. PubMed ID: 12754239 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. Chalmers NI; Palmer RJ; Cisar JO; Kolenbrander PE J Bacteriol; 2008 Dec; 190(24):8145-54. PubMed ID: 18805978 [TBL] [Abstract][Full Text] [Related]
3. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species. Yang J; Yoshida Y; Cisar JO Mol Oral Microbiol; 2014 Feb; 29(1):24-31. PubMed ID: 24397790 [TBL] [Abstract][Full Text] [Related]
4. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Egland PG; Dû LD; Kolenbrander PE Infect Immun; 2001 Dec; 69(12):7512-6. PubMed ID: 11705927 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of coaggregation-defective (Cog-) mutants of Streptococcus gordonii DL1 (Challis). Clemans DL; Kolenbrander PE J Ind Microbiol; 1995 Sep; 15(3):193-7. PubMed ID: 8519477 [TBL] [Abstract][Full Text] [Related]
6. Interbacterial Adhesion Networks within Early Oral Biofilms of Single Human Hosts. Palmer RJ; Shah N; Valm A; Paster B; Dewhirst F; Inui T; Cisar JO Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341674 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic Responses to Coaggregation between Streptococcus gordonii and Streptococcus oralis. Choo SW; Mohammed WK; Mutha NVR; Rostami N; Ahmed H; Krasnogor N; Tan GYA; Jakubovics NS Appl Environ Microbiol; 2021 Oct; 87(22):e0155821. PubMed ID: 34469191 [TBL] [Abstract][Full Text] [Related]
8. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. Jakubovics NS; Gill SR; Vickerman MM; Kolenbrander PE FEMS Microbiol Ecol; 2008 Dec; 66(3):637-44. PubMed ID: 18785881 [TBL] [Abstract][Full Text] [Related]
9. Coaggregation of oral lactobacilli with streptococci from the oral cavity. Willcox MD; Patrikakis M; Harty DW; Loo CY; Knox KW Oral Microbiol Immunol; 1993 Oct; 8(5):319-21. PubMed ID: 8265207 [TBL] [Abstract][Full Text] [Related]
10. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. Jakubovics NS; Gill SR; Iobst SE; Vickerman MM; Kolenbrander PE J Bacteriol; 2008 May; 190(10):3646-57. PubMed ID: 18359813 [TBL] [Abstract][Full Text] [Related]
11. Dental plaque development on defined streptococcal surfaces. Skopek RJ; Liljemark WF; Bloomquist CG; Rudney JD Oral Microbiol Immunol; 1993 Feb; 8(1):16-23. PubMed ID: 8510979 [TBL] [Abstract][Full Text] [Related]
12. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle. Cavalcanti IM; Del Bel Cury AA; Jenkinson HF; Nobbs AH Mol Oral Microbiol; 2017 Feb; 32(1):60-73. PubMed ID: 26834007 [TBL] [Abstract][Full Text] [Related]
13. Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V. Back CR; Douglas SK; Emerson JE; Nobbs AH; Jenkinson HF Mol Oral Microbiol; 2015 Oct; 30(5):411-24. PubMed ID: 25965671 [TBL] [Abstract][Full Text] [Related]
14. Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Sanchez BC; Chang C; Wu C; Tran B; Ton-That H mBio; 2017 Jun; 8(3):. PubMed ID: 28634238 [TBL] [Abstract][Full Text] [Related]
15. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Palmer RJ; Kazmerzak K; Hansen MC; Kolenbrander PE Infect Immun; 2001 Sep; 69(9):5794-804. PubMed ID: 11500457 [TBL] [Abstract][Full Text] [Related]
16. Use of lytic bacteriophage for Actinomyces viscosus T14V as a probe for cell surface components mediating intergeneric coaggregation. Delisle AL; Donkersloot JA; Kolenbrander PE; Tylenda CA Infect Immun; 1988 Jan; 56(1):54-9. PubMed ID: 3335409 [TBL] [Abstract][Full Text] [Related]
17. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. Cisar JO; Takahashi Y; Ruhl S; Donkersloot JA; Sandberg AL Adv Dent Res; 1997 Apr; 11(1):168-75. PubMed ID: 9524453 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of lactose-reversible coadhesion of Actinomyces naeslundii WVU 398A and Streptococcus oralis 34 on the surface of hexadecane droplets. Ellen RP; Veisman H; Buivids IA; Rosenberg M Oral Microbiol Immunol; 1994 Dec; 9(6):364-71. PubMed ID: 7870472 [TBL] [Abstract][Full Text] [Related]
20. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model. Zhang X; Senpuku H Jpn J Infect Dis; 2013; 66(1):11-6. PubMed ID: 23429078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]