BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12754511)

  • 1. Gene expression phenotypic models that predict the activity of oncogenic pathways.
    Huang E; Ishida S; Pittman J; Dressman H; Bild A; Kloos M; D'Amico M; Pestell RG; West M; Nevins JR
    Nat Genet; 2003 Jun; 34(2):226-30. PubMed ID: 12754511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis.
    Conner EA; Lemmer ER; Omori M; Wirth PJ; Factor VM; Thorgeirsson SS
    Oncogene; 2000 Oct; 19(44):5054-62. PubMed ID: 11042693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors.
    Schuldiner O; Benvenisty N
    Oncogene; 2001 Aug; 20(36):4984-94. PubMed ID: 11526483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb.
    Saavedra HI; Wu L; de Bruin A; Timmers C; Rosol TJ; Weinstein M; Robinson ML; Leone G
    Cell Growth Differ; 2002 May; 13(5):215-25. PubMed ID: 12065245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel E2F1-regulated genes by microarray.
    Ma Y; Croxton R; Moorer RL; Cress WD
    Arch Biochem Biophys; 2002 Mar; 399(2):212-24. PubMed ID: 11888208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways.
    Zhou J; Ma J; Zhang BC; Li XL; Shen SR; Zhu SG; Xiong W; Liu HY; Huang H; Zhou M; Li GY
    J Cell Physiol; 2004 Jul; 200(1):89-98. PubMed ID: 15137061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E2F1 in gliomas: a paradigm of oncogene addiction.
    Alonso MM; Alemany R; Fueyo J; Gomez-Manzano C
    Cancer Lett; 2008 May; 263(2):157-63. PubMed ID: 18334281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myc lacks E2F1's ability to suppress skin carcinogenesis.
    Rounbehler RJ; Schneider-Broussard R; Conti CJ; Johnson DG
    Oncogene; 2001 Aug; 20(38):5341-9. PubMed ID: 11536046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of E2f1 enhances tumorigenesis in a Myc transgenic model.
    Rounbehler RJ; Rogers PM; Conti CJ; Johnson DG
    Cancer Res; 2002 Jun; 62(11):3276-81. PubMed ID: 12036945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of c-myc and Cyclin D1 genes by antisense oligodeoxy nucleotides inhibits the expression of E2F1 and in vitro growth of HepG2 and Morris 5123 liver cancer cells.
    Simile MM; De Miglio MR; Muroni MR; Frau M; Asara G; Serra S; Muntoni MD; Seddaiu MA; Daino L; Feo F; Pascale RM
    Carcinogenesis; 2004 Mar; 25(3):333-41. PubMed ID: 14604889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells.
    Davis JN; McCabe MT; Hayward SW; Park JM; Day ML
    Cancer Res; 2005 May; 65(9):3633-42. PubMed ID: 15867358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways.
    Eilon T; Barash I
    BMC Cancer; 2008 Sep; 8():270. PubMed ID: 18811984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining for regulatory programs in the cancer transcriptome.
    Rhodes DR; Kalyana-Sundaram S; Mahavisno V; Barrette TR; Ghosh D; Chinnaiyan AM
    Nat Genet; 2005 Jun; 37(6):579-83. PubMed ID: 15920519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ASPP1 and ASPP2 are new transcriptional targets of E2F.
    Fogal V; Kartasheva NN; Trigiante G; Llanos S; Yap D; Vousden KH; Lu X
    Cell Death Differ; 2005 Apr; 12(4):369-76. PubMed ID: 15731768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.
    Iglesias A; Murga M; Laresgoiti U; Skoudy A; Bernales I; Fullaondo A; Moreno B; Lloreta J; Field SJ; Real FX; Zubiaga AM
    J Clin Invest; 2004 May; 113(10):1398-407. PubMed ID: 15146237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial gene control involving E2F and E Box family members.
    Giangrande PH; Zhu W; Rempel RE; Laakso N; Nevins JR
    EMBO J; 2004 Mar; 23(6):1336-47. PubMed ID: 15014447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter.
    Araki K; Nakajima Y; Eto K; Ikeda MA
    Oncogene; 2003 Oct; 22(48):7632-41. PubMed ID: 14576826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer.
    Lu Z; Luo RZ; Peng H; Huang M; Nishmoto A; Hunt KK; Helin K; Liao WS; Yu Y
    Oncogene; 2006 Jan; 25(2):230-9. PubMed ID: 16158053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity in the activation and control of transcription factor E2F-dependent apoptosis.
    Hallstrom TC; Nevins JR
    Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10848-53. PubMed ID: 12954980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.