These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12755451)

  • 1. Effects of system variables on surfactant enhanced electrokinetic removal of polycyclic aromatic hydrocarbons from clayey soils.
    Saichek RE; Reddy KR
    Environ Technol; 2003 Apr; 24(4):503-15. PubMed ID: 12755451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.
    Saichek RE; Reddy KR
    Chemosphere; 2003 Apr; 51(4):273-87. PubMed ID: 12604079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.
    Reddy KR; Saichek RE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1189-212. PubMed ID: 15137692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin.
    Maturi K; Reddy KR
    Chemosphere; 2006 May; 63(6):1022-31. PubMed ID: 16289242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [CTAB] on the hydrocarbon removal and retention from contaminated soils.
    Ranjan RS; Qian Y; Krishnapillai M
    Environ Technol; 2006 Jul; 27(7):767-76. PubMed ID: 16894821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology.
    Alcantara T; Pazos M; Gouveia S; Cameselle C; Sanroman MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):901-6. PubMed ID: 18569301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxidant dosage on integrated electrochemical remediation of contaminant mixtures in soils.
    Reddy KR; Karri MR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):881-93. PubMed ID: 18569299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation.
    Alcántara MT; Gómez J; Pazos M; Sanromán MA
    Chemosphere; 2008 Feb; 70(8):1438-44. PubMed ID: 17936331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic remediation of PAH mixtures from kaolin.
    Alcántara MT; Gómez J; Pazos M; Sanromán MA
    J Hazard Mater; 2010 Jul; 179(1-3):1156-60. PubMed ID: 20359817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments.
    Gong Z; Wilke BM; Alef K; Li P; Zhou Q
    Chemosphere; 2006 Feb; 62(5):780-7. PubMed ID: 15982705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay.
    Isosaari P; Piskonen R; Ojala P; Voipio S; Eilola K; Lehmus E; Itävaara M
    J Hazard Mater; 2007 Jun; 144(1-2):538-48. PubMed ID: 17112659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant--PAHs system.
    Zhou W; Zhu L
    Environ Pollut; 2007 May; 147(1):66-73. PubMed ID: 17070632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.
    Niqui-Arroyo JL; Ortega-Calvo JJ
    J Environ Qual; 2007; 36(5):1444-51. PubMed ID: 17766823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis.
    Lima AT; Ottosen LM; Heister K; Loch JP
    Sci Total Environ; 2012 Oct; 435-436():1-6. PubMed ID: 22842591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Desorption of polycyclic aromatic hydrocarbons from soil in presence of surfactants].
    Chen J; Hu JD; Wang XJ; Tao S
    Huan Jing Ke Xue; 2006 Feb; 27(2):361-5. PubMed ID: 16686206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes.
    Ashraf U; Lone MS; Masrat R; Shah RA; Afzal S; Chat OA; Dar AA
    Chemosphere; 2020 Mar; 242():125160. PubMed ID: 31669988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system.
    Hussein TA; Ismail ZZ
    Environ Technol; 2013; 34(1-4):351-61. PubMed ID: 23530349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution and removal of PAHs from a contaminated soil using sunflower oil.
    Gong Z; Alef K; Wilke BM; Li P
    Chemosphere; 2005 Jan; 58(3):291-8. PubMed ID: 15581932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study.
    Viglianti C; Hanna K; de Brauer C; Germain P
    Environ Pollut; 2006 Apr; 140(3):427-35. PubMed ID: 16188357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant effects on electrokinetic processes in clay-rich soils remediation.
    Fava G; Fratesi R; Ruello ML; Sani D
    Ann Chim; 2002 Oct; 92(10):955-62. PubMed ID: 12489261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.