These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12755478)

  • 21. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].
    Kovtunov EA; Shelud'ko AV; Chernyshova MP; Petrova LP; Katsy EI
    Genetika; 2013 Nov; 49(11):1270-5. PubMed ID: 25470927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense.
    Jofré E; Lagares A; Mori G
    FEMS Microbiol Lett; 2004 Feb; 231(2):267-75. PubMed ID: 14987774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene.
    Rodriguez H; Mendoza A; Cruz MA; Holguin G; Glick BR; Bashan Y
    FEMS Microbiol Ecol; 2006 Aug; 57(2):217-25. PubMed ID: 16867140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.
    Milcamps A; Van Dommelen A; Stigter J; Vanderleyden J; de Bruijn FJ
    Can J Microbiol; 1996 May; 42(5):467-78. PubMed ID: 8640606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense.
    Bible AN; Stephens BB; Ortega DR; Xie Z; Alexandre G
    J Bacteriol; 2008 Oct; 190(19):6365-75. PubMed ID: 18641130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense.
    Gupta N; Gupta A; Kumar S; Mishra R; Singh C; Tripathi AK
    Antioxid Redox Signal; 2014 Jan; 20(1):42-59. PubMed ID: 23725220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.
    Edwards AN; Siuti P; Bible AN; Alexandre G; Retterer ST; Doktycz MJ; Morrell-Falvey JL
    FEMS Microbiol Lett; 2011 Jan; 314(2):131-9. PubMed ID: 21105907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Characteristics of genes identified in the 120 MDa plasmid DNA in a mutant of Azospirillum brasilense Sp245 bacteria, defective in polar flagellation and swarming].
    Katsy EI
    Genetika; 2002 Jan; 38(1):22-32. PubMed ID: 11852790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7.
    Lerner A; Castro-Sowinski S; Lerner H; Okon Y; Burdman S
    FEMS Microbiol Lett; 2009 Nov; 300(1):75-82. PubMed ID: 19765087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense.
    Siuti P; Green C; Edwards AN; Doktycz MJ; Alexandre G
    FEMS Microbiol Lett; 2011 Oct; 323(2):105-12. PubMed ID: 22092709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.
    Arruebarrena Di Palma A; Pereyra CM; Moreno Ramirez L; Xiqui Vázquez ML; Baca BE; Pereyra MA; Lamattina L; Creus CM
    FEMS Microbiol Lett; 2013 Jan; 338(1):77-85. PubMed ID: 23082946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein.
    Klassen G; Souza EM; Yates MG; Rigo LU; Costa RM; Inaba J; Pedrosa FO
    Appl Environ Microbiol; 2005 Sep; 71(9):5637-41. PubMed ID: 16151168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions.
    Shelud'ko AV; Filip'echeva YA; Telesheva EM; Yevstigneeva SS; Petrova LP; Katsy EI
    World J Microbiol Biotechnol; 2019 Jan; 35(2):19. PubMed ID: 30656428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.
    Kumar S; Rai AK; Mishra MN; Shukla M; Singh PK; Tripathi AK
    Microbiology (Reading); 2012 Dec; 158(Pt 12):2891-2902. PubMed ID: 23023973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components.
    Burdman S; Jurkevitch E; Schwartsburd B; Hampel M; Okon Y
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1989-1999. PubMed ID: 9695932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carotenoid production and phenotypic variation in Azospirillum brasilense.
    Brenholtz GR; Tamir-Ariel D; Okon Y; Burdman S
    Res Microbiol; 2017 Jun; 168(5):493-501. PubMed ID: 28263905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis.
    Xie B; Xu K; Zhao HX; Chen SF
    FEMS Microbiol Lett; 2005 Jul; 248(1):57-63. PubMed ID: 15961260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: involvement in iron uptake.
    Mori E; Fulchieri M; Indorato C; Fani R; Bazzicalupo M
    J Bacteriol; 1996 Jun; 178(12):3440-6. PubMed ID: 8655539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense.
    Ishida ML; Assumpção MC; Machado HB; Benelli EM; Souza EM; Pedrosa FO
    Braz J Med Biol Res; 2002 Jun; 35(6):651-61. PubMed ID: 12045829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots.
    Ramirez-Mata A; Pacheco MR; Moreno SJ; Xiqui-Vazquez ML; Baca BE
    Microbiol Res; 2018 Oct; 215():155-163. PubMed ID: 30172303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.