BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 12755685)

  • 1. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
    Shenton D; Grant CM
    Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase.
    Xing KY; Lou MF
    Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of lens glycolytic pathway by thioltransferase.
    Qiao F; Xing K; Lou MF
    Exp Eye Res; 2000 Jun; 70(6):745-53. PubMed ID: 10843779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress.
    Grant CM; Quinn KA; Dawes IW
    Mol Cell Biol; 1999 Apr; 19(4):2650-6. PubMed ID: 10082531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subapoptogenic oxidative stress strongly increases the activity of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase.
    Cerella C; D'Alessio M; Cristofanon S; De Nicola M; Radogna F; Dicato M; Diederich M; Ghibelli L
    Ann N Y Acad Sci; 2009 Aug; 1171():583-90. PubMed ID: 19723108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae.
    Shenton D; Perrone G; Quinn KA; Dawes IW; Grant CM
    J Biol Chem; 2002 May; 277(19):16853-9. PubMed ID: 11882660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress.
    Seres T; Ravichandran V; Moriguchi T; Rokutan K; Thomas JA; Johnston RB
    J Immunol; 1996 Mar; 156(5):1973-80. PubMed ID: 8596052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-based regulation of glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a strategy to counteract oxidative stress.
    Rinalducci S; Marrocco C; Zolla L
    Transfusion; 2015 Mar; 55(3):499-506. PubMed ID: 25196942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus.
    Weber H; Engelmann S; Becher D; Hecker M
    Mol Microbiol; 2004 Apr; 52(1):133-40. PubMed ID: 15049816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2.
    Magherini F; Tani C; Gamberi T; Caselli A; Bianchi L; Bini L; Modesti A
    Proteomics; 2007 May; 7(9):1434-45. PubMed ID: 17469077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica.
    Pineda E; Encalada R; Rodríguez-Zavala JS; Olivos-García A; Moreno-Sánchez R; Saavedra E
    FEBS J; 2010 Aug; 277(16):3382-95. PubMed ID: 20629749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase.
    Baker MS; Feigan J; Lowther DA
    J Rheumatol; 1989 Jan; 16(1):7-14. PubMed ID: 2716009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The association of glycolytic enzymes from yeast confers resistance against inhibition by trehalose.
    Araiza-Olivera D; Sampedro JG; Mújica A; Peña A; Uribe-Carvajal S
    FEMS Yeast Res; 2010 May; 10(3):282-9. PubMed ID: 20148975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.