BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12755697)

  • 1. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
    Soti C; Vermes A; Haystead TA; Csermely P
    Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
    Söti C; Rácz A; Csermely P
    J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.
    Grenert JP; Sullivan WP; Fadden P; Haystead TA; Clark J; Mimnaugh E; Krutzsch H; Ochel HJ; Schulte TW; Sausville E; Neckers LM; Toft DO
    J Biol Chem; 1997 Sep; 272(38):23843-50. PubMed ID: 9295332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The charged region of Hsp90 modulates the function of the N-terminal domain.
    Scheibel T; Siegmund HI; Jaenicke R; Ganz P; Lilie H; Buchner J
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1297-302. PubMed ID: 9990018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain.
    Garnier C; Lafitte D; Tsvetkov PO; Barbier P; Leclerc-Devin J; Millot JM; Briand C; Makarov AA; Catelli MG; Peyrot V
    J Biol Chem; 2002 Apr; 277(14):12208-14. PubMed ID: 11805114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural-thermodynamic relationships of interactions in the N-terminal ATP-binding domain of Hsp90.
    Nilapwar S; Williams E; Fu C; Prodromou C; Pearl LH; Williams MA; Ladbury JE
    J Mol Biol; 2009 Oct; 392(4):923-36. PubMed ID: 19631219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.
    Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    Cell; 1997 Jul; 90(1):65-75. PubMed ID: 9230303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence.
    Scheibel T; Weikl T; Buchner J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1495-9. PubMed ID: 9465043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation.
    Langer T; Schlatter H; Fasold H
    Cell Biol Int; 2002; 26(7):653-7. PubMed ID: 12127946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling.
    D'Annessa I; Moroni E; Colombo G
    J Mol Biol; 2021 Jan; 433(2):166728. PubMed ID: 33275968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand.
    Henot F; Crublet E; Frech M; Boisbouvier J
    Biomol NMR Assign; 2022 Oct; 16(2):257-266. PubMed ID: 35701717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90.
    Raman S; Singh M; Tatu U; Suguna K
    Sci Rep; 2015 Nov; 5():17015. PubMed ID: 26599366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.