These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 12755720)
41. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Gray ND; Comaskey D; Miskin IP; Pickup RW; Suzuki K; Head IM Environ Microbiol; 2004 Jul; 6(7):669-77. PubMed ID: 15186345 [TBL] [Abstract][Full Text] [Related]
42. Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean. Jean MR; Gonzalez-Rizzo S; Gauffre-Autelin P; Lengger SK; Schouten S; Gros O PLoS One; 2015; 10(2):e0117832. PubMed ID: 25689402 [TBL] [Abstract][Full Text] [Related]
43. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment. Lipsewers YA; Vasquez-Cardenas D; Seitaj D; Schauer R; Hidalgo-Martinez S; Sinninghe Damsté JS; Meysman FJR; Villanueva L; Boschker HTS Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314724 [TBL] [Abstract][Full Text] [Related]
44. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Grünke S; Felden J; Lichtschlag A; Girnth AC; De Beer D; Wenzhöfer F; Boetius A Geobiology; 2011 Jul; 9(4):330-48. PubMed ID: 21535364 [TBL] [Abstract][Full Text] [Related]
45. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment. Laufer K; Røy H; Jørgensen BB; Kappler A Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777 [TBL] [Abstract][Full Text] [Related]
46. Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Alain K; Harder J; Widdel F; Zengler K Microbiology (Reading); 2012 Dec; 158(Pt 12):2946-2957. PubMed ID: 23038808 [TBL] [Abstract][Full Text] [Related]
47. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. Marzocchi U; Trojan D; Larsen S; Meyer RL; Revsbech NP; Schramm A; Nielsen LP; Risgaard-Petersen N ISME J; 2014 Aug; 8(8):1682-90. PubMed ID: 24577351 [TBL] [Abstract][Full Text] [Related]
48. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Kalanetra KM; Joye SB; Sunseri NR; Nelson DC Environ Microbiol; 2005 Sep; 7(9):1451-60. PubMed ID: 16104867 [TBL] [Abstract][Full Text] [Related]
49. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
50. Unravelling the sulphur cycle of marine sediments. Jørgensen BB Environ Microbiol; 2019 Oct; 21(10):3533-3538. PubMed ID: 31222871 [TBL] [Abstract][Full Text] [Related]
51. Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile. Schulz HN; Jorgensen BB; Fossing HA; Ramsing NB Appl Environ Microbiol; 1996 Jun; 62(6):1855-62. PubMed ID: 16535327 [TBL] [Abstract][Full Text] [Related]
52. Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system. Cytryn E; Gelfand I; Barak Y; van Rijn J; Minz D Environ Microbiol; 2003 Jan; 5(1):55-63. PubMed ID: 12542713 [TBL] [Abstract][Full Text] [Related]
53. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. Brock J; Schulz-Vogt HN ISME J; 2011 Mar; 5(3):497-506. PubMed ID: 20827290 [TBL] [Abstract][Full Text] [Related]
54. Phylogenetic and morphologic complexity of giant sulphur bacteria. Salman V; Bailey JV; Teske A Antonie Van Leeuwenhoek; 2013 Aug; 104(2):169-86. PubMed ID: 23793621 [TBL] [Abstract][Full Text] [Related]
55. Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi. Nemoto F; Kojima H; Fukui M Microb Ecol; 2011 Nov; 62(4):753-64. PubMed ID: 21800088 [TBL] [Abstract][Full Text] [Related]
56. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Otte JM; Harter J; Laufer K; Blackwell N; Straub D; Kappler A; Kleindienst S Environ Microbiol; 2018 Jul; 20(7):2483-2499. PubMed ID: 29708639 [TBL] [Abstract][Full Text] [Related]
57. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Stevens EW; Bailey JV; Flood BE; Jones DS; Gilhooly WP; Joye SB; Teske A; Mason OU Geobiology; 2015 Nov; 13(6):588-603. PubMed ID: 26462132 [TBL] [Abstract][Full Text] [Related]
58. Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. Kojima H; Nakajima T; Fukui M FEMS Microbiol Ecol; 2007 Jan; 59(1):23-31. PubMed ID: 16989657 [TBL] [Abstract][Full Text] [Related]
59. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]