BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 127561)

  • 1. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways of D-fructose catabolism in species of Pseudomonas.
    Sawyer MH; Baumann P; Baumann L; Berman SM; Cánovas JL; Berman RH
    Arch Microbiol; 1977 Feb; 112(1):49-55. PubMed ID: 139135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. II. Properties of 1-phosphofructokinase and 6-phosphofructokinase.
    Baumann L; Baumann P
    Arch Microbiol; 1975 Nov; 105(3):241-8. PubMed ID: 242298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata.
    Conrad R; Schlegel HG
    Arch Microbiol; 1977 Feb; 112(1):39-48. PubMed ID: 139134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes of D-fructose catabolism in species of Beneckea and Photobacterium.
    Gee DL; Baumann P; Baumann L
    Arch Microbiol; 1975 Apr; 103(2):205-7. PubMed ID: 125566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis.
    Sawyer MH; Baumann P; Baumann L
    Arch Microbiol; 1977 Mar; 112(2):169-72. PubMed ID: 139858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellolis.
    O'Brien RW
    Arch Microbiol; 1975 Mar; 103(1):71-6. PubMed ID: 239656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The route of ethanol formation in Zymomonas mobilis.
    Dawes EA; Ribbons DW; Large PJ
    Biochem J; 1966 Mar; 98(3):795-803. PubMed ID: 4287842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.
    Wilkes RA; Mendonca CM; Aristilde L
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose metabolism in four Pseudomonas species.
    Van Dijken JP; Quayle JR
    Arch Microbiol; 1977 Sep; 114(3):281-6. PubMed ID: 143919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase.
    Pickl A; Johnsen U; Schönheit P
    J Bacteriol; 2012 Jun; 194(12):3088-97. PubMed ID: 22493022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour.
    Weber J; Kayser A; Rinas U
    Microbiology (Reading); 2005 Mar; 151(Pt 3):707-716. PubMed ID: 15758217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies.
    Phibbs PV; McCowen SM; Feary TW; Blevins WT
    J Bacteriol; 1978 Feb; 133(2):717-28. PubMed ID: 146701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative pathway for the degradation of endogenous fructose during the catabolism of sucrose in Rhodopseudomonas capsulata.
    Conrad R; Schlegel HG
    J Gen Microbiol; 1978 Apr; 105(2):305-13. PubMed ID: 641527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of carbohydrate derivatives by Pseudomonas acidovorans.
    Wettermark MH; Taylor JR; Rogers ML; Heath HE
    J Bacteriol; 1979 May; 138(2):418-24. PubMed ID: 220214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple enzyme forms of glyceraldehyde-3-phosphate dehydrogenase in Pseudomonas aeruginosa PAO.
    Rivers DB; Blevins WT
    J Gen Microbiol; 1987 Nov; 133(11):3159-64. PubMed ID: 3128638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
    Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND
    Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.