These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Citrobacter freundii impairs the phosphoryl transfer network in the gills of Rhamdia quelen: Impairment of bioenergetics homeostasis. Baldissera MD; Souza CF; Junior GB; Moreira KLS; da Veiga ML; da Rocha MIUM; Baldisserotto B Microb Pathog; 2018 Apr; 117():157-161. PubMed ID: 29471134 [TBL] [Abstract][Full Text] [Related]
23. Changes in the cerebral phosphotransfer network impair energetic homeostasis in an aflatoxin B Baldissera MD; Souza CF; Zeppenfeld CC; Descovi S; da Silva AS; Baldisserotto B Fish Physiol Biochem; 2018 Aug; 44(4):1051-1059. PubMed ID: 29546539 [TBL] [Abstract][Full Text] [Related]
24. Involvement of the phosphoryl transfer network on cardiac energetic metabolism during Staphylococcus aureus infection and its association to disease pathophysiology. Perin G; Baldissera MD; Jaguezeski AM; Crecencio RB; Stefani LM; Gris A; Mendes RE; Souza CF; Dalzuk V; da Silva AS Microb Pathog; 2019 Jan; 126():318-322. PubMed ID: 30439401 [TBL] [Abstract][Full Text] [Related]
25. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
26. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
27. Adenylate kinase 1 deficiency induces molecular and structural adaptations to support muscle energy metabolism. Janssen E; de Groof A; Wijers M; Fransen J; Dzeja PP; Terzic A; Wieringa B J Biol Chem; 2003 Apr; 278(15):12937-45. PubMed ID: 12562761 [TBL] [Abstract][Full Text] [Related]
28. Tissue oxidative damage mediates impairment on phosphotransfer network during thymol intake: Effects on hepatic and renal bioenergetics. Baldissera MD; Souza CF; De Matos AFIM; Baldisserotto B; da Silva AS; Monteiro SG Chem Biol Interact; 2018 Dec; 296():83-88. PubMed ID: 30243740 [TBL] [Abstract][Full Text] [Related]
29. Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Sauer U; Schlattner U Metab Eng; 2004 Jul; 6(3):220-8. PubMed ID: 15256212 [TBL] [Abstract][Full Text] [Related]
30. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. Qian H; Reluga TC Phys Rev Lett; 2005 Jan; 94(2):028101. PubMed ID: 15698232 [TBL] [Abstract][Full Text] [Related]
31. Disturbance of energetic homeostasis and oxidative damage provoked by trichlorfon as relevant toxicological mechanisms using silver catfish as experimental model. Baldissera MD; Souza CF; Descovi SN; Zanella R; Prestes OD; de Matos AFIM; da Silva AS; Baldisserotto B; Gris A; Mendes RE Chem Biol Interact; 2019 Feb; 299():94-100. PubMed ID: 30481498 [TBL] [Abstract][Full Text] [Related]
32. Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions. Yegutkin GG; Samburski SS; Jalkanen S FASEB J; 2003 Jul; 17(10):1328-30. PubMed ID: 12759341 [TBL] [Abstract][Full Text] [Related]
33. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics. Baldissera MD; Souza CF; Júnior GB; Verdi CM; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Vizzotto BS; Baldisserotto B Microb Pathog; 2017 Sep; 110():439-443. PubMed ID: 28735082 [TBL] [Abstract][Full Text] [Related]
34. Evidence of a new phosphoryl transfer system in nucleotide metabolism. Vannoni D; Leoncini R; Giglioni S; Niccolai N; Spiga O; Aceto E; Marinello E FEBS J; 2009 Jan; 276(1):271-85. PubMed ID: 19049516 [TBL] [Abstract][Full Text] [Related]
36. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Klepinin A; Zhang S; Klepinina L; Rebane-Klemm E; Terzic A; Kaambre T; Dzeja P Front Oncol; 2020; 10():660. PubMed ID: 32509571 [TBL] [Abstract][Full Text] [Related]
37. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Aliev MK; Saks VA Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806 [TBL] [Abstract][Full Text] [Related]
38. Functional coupling of creatine kinases in muscles: species and tissue specificity. Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324 [TBL] [Abstract][Full Text] [Related]
39. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857 [TBL] [Abstract][Full Text] [Related]
40. Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells. Saks V; Dos Santos P; Gellerich FN; Diolez P Mol Cell Biochem; 1998 Jul; 184(1-2):291-307. PubMed ID: 9746326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]