These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 12756321)

  • 21. Molecular dynamics simulations of sarcin-ricin rRNA motif.
    Spacková N; Sponer J
    Nucleic Acids Res; 2006; 34(2):697-708. PubMed ID: 16456030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods.
    Réblová K; Střelcová Z; Kulhánek P; Beššeová I; Mathews DH; Nostrand KV; Yildirim I; Turner DH; Sponer J
    J Chem Theory Comput; 2010 Jan; 2010(6):910-929. PubMed ID: 21132104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P.
    Odell L; Huang V; Jakacka M; Pan T
    Nucleic Acids Res; 1998 Aug; 26(16):3717-23. PubMed ID: 9685487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the structural hierarchy and energy landscape of an RNA T-loop hairpin.
    Zhuang Z; Jaeger L; Shea JE
    Nucleic Acids Res; 2007; 35(20):6995-7002. PubMed ID: 17940098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The first phytoplasma RNase P RNA provides new insights into the sequence requirements of this ribozyme.
    Wagner M; Fingerhut C; Gross HJ; Schön A
    Nucleic Acids Res; 2001 Jun; 29(12):2661-5. PubMed ID: 11410676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.
    Mobley EM; Pan T
    Nucleic Acids Res; 1999 Nov; 27(21):4298-304. PubMed ID: 10518624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site.
    Klinck R; Westhof E; Walker S; Afshar M; Collier A; Aboul-Ela F
    RNA; 2000 Oct; 6(10):1423-31. PubMed ID: 11073218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights into substrate recognition by the Neurospora Varkud satellite ribozyme: importance of U-turns at the kissing-loop junction.
    Bouchard P; Legault P
    Biochemistry; 2014 Jan; 53(1):258-69. PubMed ID: 24325625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
    Leontis NB; Westhof E
    RNA; 1998 Sep; 4(9):1134-53. PubMed ID: 9740131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2-Amino-1,3-benzothiazole-6-carboxamide Preferentially Binds the Tandem Mismatch Motif r(UY:GA).
    Chang AT; Chen L; Song L; Zhang S; Nikonowicz EP
    Biochemistry; 2020 Sep; 59(35):3225-3234. PubMed ID: 32786414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate.
    Svärd SG; Kagardt U; Kirsebom LA
    RNA; 1996 May; 2(5):463-72. PubMed ID: 8665413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The UA_handle: a versatile submotif in stable RNA architectures.
    Jaeger L; Verzemnieks EJ; Geary C
    Nucleic Acids Res; 2009 Jan; 37(1):215-30. PubMed ID: 19036788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys.
    Helm M; Giegé R; Florentz C
    Biochemistry; 1999 Oct; 38(40):13338-46. PubMed ID: 10529209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements.
    Brown JW; Nolan JM; Haas ES; Rubio MA; Major F; Pace NR
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):3001-6. PubMed ID: 8610158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of short external guide sequences (EGSs) for cleavage of target molecules with RNase P.
    Werner M; Rosa E; George ST
    Nucleic Acids Symp Ser; 1997; (36):19-21. PubMed ID: 9478194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure of the CUUG hairpin loop: a novel RNA tetraloop motif.
    Jucker FM; Pardi A
    Biochemistry; 1995 Nov; 34(44):14416-27. PubMed ID: 7578046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking.
    Harris ME; Kazantsev AV; Chen JL; Pace NR
    RNA; 1997 Jun; 3(6):561-76. PubMed ID: 9174092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.