These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12756330)

  • 41. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice.
    Koduvayur SP; Woodson SA
    RNA; 2004 Oct; 10(10):1526-32. PubMed ID: 15337845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA.
    Pan T; Artsimovitch I; Fang XW; Landick R; Sosnick TR
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9545-50. PubMed ID: 10449729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme.
    Takamoto K; He Q; Morris S; Chance MR; Brenowitz M
    Nat Struct Biol; 2002 Dec; 9(12):928-33. PubMed ID: 12434149
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid.
    Chaulk SG; MacMillan AM
    Biochemistry; 2000 Jan; 39(1):2-8. PubMed ID: 10625473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
    Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(7):1650-5. PubMed ID: 10075996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small angle X-ray scattering reveals a compact intermediate in RNA folding.
    Russell R; Millett IS; Doniach S; Herschlag D
    Nat Struct Biol; 2000 May; 7(5):367-70. PubMed ID: 10802731
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme.
    Guo F; Gooding AR; Cech TR
    RNA; 2006 Mar; 12(3):387-95. PubMed ID: 16431981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic intermediates trapped by native interactions in RNA folding.
    Treiber DK; Rook MS; Zarrinkar PP; Williamson JR
    Science; 1998 Mar; 279(5358):1943-6. PubMed ID: 9506945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots.
    Chadalavada DM; Senchak SE; Bevilacqua PC
    J Mol Biol; 2002 Apr; 317(4):559-75. PubMed ID: 11955009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
    Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential folding of the genomic ribozyme of the hepatitis delta virus: structural analysis of RNA transcription intermediates.
    Matysiak M; Wrzesinski J; Ciesiołka J
    J Mol Biol; 1999 Aug; 291(2):283-94. PubMed ID: 10438621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme.
    Chauhan S; Behrouzi R; Rangan P; Woodson SA
    J Mol Biol; 2009 Mar; 386(4):1167-78. PubMed ID: 19154736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast.
    Mahen EM; Harger JW; Calderon EM; Fedor MJ
    Mol Cell; 2005 Jul; 19(1):27-37. PubMed ID: 15989962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Concordant exploration of the kinetics of RNA folding from global and local perspectives.
    Kwok LW; Shcherbakova I; Lamb JS; Park HY; Andresen K; Smith H; Brenowitz M; Pollack L
    J Mol Biol; 2006 Jan; 355(2):282-93. PubMed ID: 16303138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent insights on RNA folding mechanisms from catalytic RNA.
    Woodson SA
    Cell Mol Life Sci; 2000 May; 57(5):796-808. PubMed ID: 10892344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme.
    Russell R; Herschlag D
    RNA; 1999 Feb; 5(2):158-66. PubMed ID: 10024168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification.
    Grosshans CA; Cech TR
    Nucleic Acids Res; 1991 Jul; 19(14):3875-80. PubMed ID: 1650453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.