These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 1275638)

  • 21. On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius.
    Giesel H; Simon H
    Arch Microbiol; 1983 Aug; 135(1):51-7. PubMed ID: 6354130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epistasis between deletion mutations in the tryptophan region and mutations affecting the general aromatic pathway in Escherichia coli K-12.
    Somerville RL
    J Bacteriol; 1967 Nov; 94(5):1798-9. PubMed ID: 4863984
    [No Abstract]   [Full Text] [Related]  

  • 23. SOME BIOCHEMICAL LESSONS TO BE LEARNED FROM PHENYLKETONURIA.
    BESSMAN SP
    J Pediatr; 1964 Jun; 64():828-38. PubMed ID: 14172232
    [No Abstract]   [Full Text] [Related]  

  • 24. Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan.
    Wilde E; Collins MD; Hippe H
    Int J Syst Bacteriol; 1997 Jan; 47(1):164-70. PubMed ID: 8995820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited.
    Britz ML; Wilkinson RG
    Can J Microbiol; 1982 Mar; 28(3):291-300. PubMed ID: 6805929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of tryptophan in the liver: interference with decarboxylation of other aromatic amino acids.
    Drsata J; Marklová E
    Acta Medica (Hradec Kralove); 2000; 43(1):15-7. PubMed ID: 10934780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism.
    Salter M; Knowles RG; Pogson CI
    Biochem J; 1986 Mar; 234(3):635-47. PubMed ID: 2872885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii.
    STADTMAN TC; ELLIOTT P
    J Biol Chem; 1957 Oct; 228(2):983-97. PubMed ID: 13475375
    [No Abstract]   [Full Text] [Related]  

  • 29. The formation mechanisms of key flavor substances in stinky tofu brine based on metabolism of aromatic amino acids.
    Tang H; Li P; Chen L; Ma JK; Guo HH; Huang XC; Zhong RM; Jing SQ; Jiang LW
    Food Chem; 2022 Oct; 392():133253. PubMed ID: 35649310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and peptostreptococcus anaerobius.
    Turton LJ; Drucker DB; Ganguli LA
    J Med Microbiol; 1983 Feb; 16(1):61-7. PubMed ID: 6822993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of aromatic acids on the influx of aromatic amino acids in rat brain slices.
    Lähdesmäki P; Hannus ML
    Exp Brain Res; 1977 Dec; 30(4):539-48. PubMed ID: 598439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane transport of aromatic amino acids by Hymenolepis diminuta (Cestoda).
    Pappas PW; Gamble HR
    Parasitology; 1980 Oct; 81(2):395-403. PubMed ID: 7443301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana.
    Müller A; Weiler EW
    Planta; 2000 Nov; 211(6):855-63. PubMed ID: 11144271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency-pulsed electron capture gas-liquid chromatographic analysis of metabolites produced by Clostridium difficile in broth enriched with amino acids.
    Brooks JB; Nunez-Montiel OL; Wycoff BJ; Moss CW
    J Clin Microbiol; 1984 Sep; 20(3):539-48. PubMed ID: 6490835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria.
    Pedraza RO; Ramírez-Mata A; Xiqui ML; Baca BE
    FEMS Microbiol Lett; 2004 Apr; 233(1):15-21. PubMed ID: 15043864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana.
    Müller A; Hillebrand H; Weiler EW
    Planta; 1998 Oct; 206(3):362-9. PubMed ID: 9763705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The formation and metabolism of phenyl-substituted fatty acids in the ruminant.
    Scott TW; Ward PF; Dawson RM
    Biochem J; 1964 Jan; 90(1):12-24. PubMed ID: 5832281
    [No Abstract]   [Full Text] [Related]  

  • 38. Conversion of L-tyrosine to phenol by Clostridium tetanomorphum.
    Brot N; Smit Z; Weissbach H
    Arch Biochem Biophys; 1965 Oct; 112(1):1-6. PubMed ID: 5865116
    [No Abstract]   [Full Text] [Related]  

  • 39. The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain.
    McKean CM
    Brain Res; 1972 Dec; 47(2):469-76. PubMed ID: 4642573
    [No Abstract]   [Full Text] [Related]  

  • 40. Inhibition of protein and aminoacyl-tRNA synthesis, and binding and transport sites for aromatic amino acids in the brain in vitro with aromatic acids.
    Lähdesmäki P
    Int J Neurosci; 1984 Mar; 23(1):1-13. PubMed ID: 6563016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.