These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12756917)

  • 41. Variability in molybdenum uptake activity in Bradyrhizobium japonicum strains.
    Graham L; Maier RJ
    J Bacteriol; 1987 Jun; 169(6):2555-60. PubMed ID: 3473064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predominant populations of indigenous soybean-nodulating Bradyrhizobium japonicum strains obtained from organic farming systems in Minnesota.
    Wongphatcharachai M; Staley C; Wang P; Moncada KM; Sheaffer CC; Sadowsky MJ
    J Appl Microbiol; 2015 May; 118(5):1152-64. PubMed ID: 25660818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis.
    Kereszt A; Slaska-Kiss K; Putnoky P; Banfalvi Z; Kondorosi A
    Mol Gen Genet; 1995 Apr; 247(1):39-47. PubMed ID: 7715602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation.
    Tate R; Riccio A; Iaccarino M; Patriarca EJ
    J Bacteriol; 1997 Dec; 179(23):7343-50. PubMed ID: 9393698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.
    Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ammonium repression of the nitrite-nitrate (nasAB) assimilatory operon of Azotobacter vinelandii is enhanced in mutants expressing the nifO gene at high levels.
    Gutierrez JC; Santero E; Tortolero M
    Mol Gen Genet; 1997 Jun; 255(2):172-9. PubMed ID: 9236774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tn5-induced mutants of Azotobacter vinelandii affected in nitrogen fixation under Mo-deficient and Mo-sufficient conditions.
    Joerger RD; Premakumar R; Bishop PE
    J Bacteriol; 1986 Nov; 168(2):673-82. PubMed ID: 3023285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reassessment of major products of N2 fixation by bacteroids from soybean root nodules.
    Li Y; Parsons R; Day DA; Bergersen FJ
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1959-1966. PubMed ID: 12055315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anaerobic Reduction of Nitrate to Nitrous Oxide Is Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens.
    Siqueira AF; Minamisawa K; Sánchez C
    Microbes Environ; 2017 Dec; 32(4):398-401. PubMed ID: 29109361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Bradyrhizobium japonicum napEDABC genes are controlled by the FixLJ-FixK(2)-NnrR regulatory cascade.
    Robles EF; Sánchez C; Bonnard N; Delgado MJ; Bedmar EJ
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):108-10. PubMed ID: 16417495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the norCBQD genes, encoding nitric oxide reductase, in the nitrogen fixing bacterium Bradyrhizobium japonicum.
    Mesa S; Velasco L; Manzanera ME; Delgado MAJ; Bedmar EJ
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3553-3560. PubMed ID: 12427946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation and characterization of a ntrC mutant of Bradyrhizobium (Parasponia) sp. ANU289.
    Udvardi MK; Lister DL; Day DA
    J Gen Microbiol; 1992 May; 138(5):1019-25. PubMed ID: 1353784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum.
    Green LS; Emerich DW
    Plant Physiol; 1997 Aug; 114(4):1359-1368. PubMed ID: 12223774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110.
    Quelas JI; Mongiardini EJ; Pérez-Giménez J; Parisi G; Lodeiro AR
    J Bacteriol; 2013 Jul; 195(14):3145-55. PubMed ID: 23667236
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transposon Tn5-Generated Bradyrhizobium japonicum Mutants Unable To Grow Chemoautotrophically with H(2).
    Hom SS; Novak PD; Maier RJ
    Appl Environ Microbiol; 1988 Feb; 54(2):358-63. PubMed ID: 16347549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the Bradyrhizobium japonicum galE gene: its impact on lipopolysaccharide profile and nodulation of soybean.
    Chang WS; Park KM; Koh SC; So JS
    FEMS Microbiol Lett; 2008 Mar; 280(2):242-9. PubMed ID: 18266738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.
    Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O
    Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Bradyrhizobium japonicum noeD gene: a negatively acting, genotype-specific nodulation gene for soybean.
    Lohrke SM; Day B; Kolli VS; Hancock R; Yuen JP; de Souza ML; Stacey G; Carlson R; Tong Z; Hur HG; Orf JH; Sadowsky MJ
    Mol Plant Microbe Interact; 1998 Jun; 11(6):476-88. PubMed ID: 9612946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inactivation of gltB abolishes expression of the assimilatory nitrate reductase gene (nasB) in Pseudomonas putida KT2442.
    Eberl L; Ammendola A; Rothballer MH; Givskov M; Sternberg C; Kilstrup M; Schleifer KH; Molin S
    J Bacteriol; 2000 Jun; 182(12):3368-76. PubMed ID: 10852866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Nitrogenase, hydrogenase and nitrate reductase activities, oxygen consumption, and ATP content in nodules formed by strains of Rhizobium leguminosarum 128C53 and 300 in symbiosis with pea plants].
    Bedmar EJ; Olivares J
    Microbiologia; 1986 Oct; 2(2):89-96. PubMed ID: 3078142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.