These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 12757328)
1. Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. Barbehenn RV J Chem Ecol; 2003 Mar; 29(3):683-702. PubMed ID: 12757328 [TBL] [Abstract][Full Text] [Related]
2. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Barbehenn RV J Chem Ecol; 2002 Jul; 28(7):1329-47. PubMed ID: 12199499 [TBL] [Abstract][Full Text] [Related]
3. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves. Barbehenn RV; Walker AC; Uddin F J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024 [TBL] [Abstract][Full Text] [Related]
4. Evaluating ascorbate oxidase as a plant defense against leaf-chewing insects using transgenic poplar. Barbehenn RV; Jaros A; Yip L; Tran L; Kanellis AK; Constabel CP J Chem Ecol; 2008 Oct; 34(10):1331-40. PubMed ID: 18773241 [TBL] [Abstract][Full Text] [Related]
5. Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Barbehenn RV; Karowe DN; Chen Z Oecologia; 2004 Jun; 140(1):96-103. PubMed ID: 15069636 [TBL] [Abstract][Full Text] [Related]
6. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? Krishnan N; KodrÃk D J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709 [TBL] [Abstract][Full Text] [Related]
8. Physical and catalytic properties of amylase from the alimentary canal of the migratory grasshopper, Melanoplus sanguinipes (Fab.). Moore KC; Davis GR Arch Int Physiol Biochim; 1985 Jun; 93(2):171-4. PubMed ID: 2412511 [No Abstract] [Full Text] [Related]
9. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae). Smith DI; Lockwood JA Arch Environ Contam Toxicol; 2003 Apr; 44(3):377-82. PubMed ID: 12712298 [TBL] [Abstract][Full Text] [Related]
10. Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Barbehenn RV Arch Insect Biochem Physiol; 2001 Jun; 47(2):86-99. PubMed ID: 11376455 [TBL] [Abstract][Full Text] [Related]
11. Plant phenolics as dietary antioxidants for herbivorous insects: a test with genetically modified tobacco. Johnson KS; Felton GW J Chem Ecol; 2001 Dec; 27(12):2579-97. PubMed ID: 11789960 [TBL] [Abstract][Full Text] [Related]
12. The influence of host suitability on the range of grasshopper species utilized by Blaesoxipha atlanis (Diptera: Sarcophagidae) in the field. Danyk T; Mackauer M; Johnson DL Bull Entomol Res; 2005 Dec; 95(6):571-8. PubMed ID: 16336704 [TBL] [Abstract][Full Text] [Related]
13. Mycosis inhibits cannibalism by Melanoplus sanguinipes, M. differentialis, Schistocerca americana, and Anabrus simplex. Jaronski ST J Insect Sci; 2013; 13():122. PubMed ID: 24786183 [TBL] [Abstract][Full Text] [Related]
14. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus. Drolet BS; Stuart MA; Derner JD Appl Environ Microbiol; 2009 May; 75(10):3029-33. PubMed ID: 19286779 [TBL] [Abstract][Full Text] [Related]
15. Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins. Barbehenn RV; Martin MM; Hagerman AE J Chem Ecol; 1996 Oct; 22(10):1901-19. PubMed ID: 24227115 [TBL] [Abstract][Full Text] [Related]
16. Stability of AtVSP in the insect digestive canal determines its defensive capability. Chi YH; Jing X; Lei J; Ahn JE; Koo YD; Yun DJ; Lee SY; Behmer ST; Koiwa H; Zhu-Salzman K J Insect Physiol; 2011 Mar; 57(3):391-9. PubMed ID: 21192943 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299 [TBL] [Abstract][Full Text] [Related]
18. Why certain male grasshoppers have clubbed antennae? Dumas P; Tetreau G; Petit D C R Biol; 2010 May; 333(5):429-37. PubMed ID: 20451885 [TBL] [Abstract][Full Text] [Related]
19. Assessment of oxidative stress and activities of antioxidant enzymes depicts the negative systemic effect of iron-containing fertilizers and plant phenolic compounds in the desert locust. Renault D; Dorrah MA; Mohamed AA; Abdelfattah EA; Bassal TT Environ Sci Pollut Res Int; 2016 Nov; 23(21):21989-22000. PubMed ID: 27539469 [TBL] [Abstract][Full Text] [Related]
20. Laboratory and field evaluations of imidacloprid against Melanoplus sanguinipes (Orthoptera: Acrididae) on small grains. Tharp CI; Johnson GD; Onsager JA J Econ Entomol; 2000 Apr; 93(2):293-9. PubMed ID: 10826175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]