These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 12757328)
21. Microbial Ecology of the Gut in Laboratory Stocks of the Migratory Grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Mead LJ; Khachatourians GG; Jones GA Appl Environ Microbiol; 1988 May; 54(5):1174-81. PubMed ID: 16347630 [TBL] [Abstract][Full Text] [Related]
22. Modeling Ecological Dynamics of a Major Agricultural Pest Insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A Cohort-Based Approach Incorporating the Effects of Weather on Grasshopper Development and Abundance. Olfert O; Weiss RM; Giffen D; Vankosky MA J Econ Entomol; 2021 Feb; 114(1):122-130. PubMed ID: 33179743 [TBL] [Abstract][Full Text] [Related]
23. Fluorescein-dextran sequestration in the reproductive tract of the migratory grasshopper Melanoplus sanguinipes (Orthoptera, Acridiidae). Jones N; Taub-Montemayor T; Rankin MA Micron; 2013 Mar; 46():80-4. PubMed ID: 23276466 [TBL] [Abstract][Full Text] [Related]
24. Damage potential of grasshoppers (Orthoptera: Acrididae) on early growth stages of small-grains and canola under subarctic conditions. Begna SH; Fielding DJ J Econ Entomol; 2003 Aug; 96(4):1193-200. PubMed ID: 14503591 [TBL] [Abstract][Full Text] [Related]
25. Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Siemann E; Rogers WE Oecologia; 2003 May; 135(3):451-7. PubMed ID: 12721836 [TBL] [Abstract][Full Text] [Related]
26. Host plant-derived allelochemicals and metal components are associated with oxidative predominance and antioxidant plasticity in the larval tissues of silkworm, Antheraea mylitta: Further evidence of joint effects hypothesis. Sahu S; Dutta A; Ray DK; Pradhan J; Dandapat J Comp Biochem Physiol B Biochem Mol Biol; 2018 Sep; 223():39-49. PubMed ID: 29966773 [TBL] [Abstract][Full Text] [Related]
27. Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Huang X; Ma J; Qin X; Tu X; Cao G; Wang G; Nong X; Zhang Z Sci Rep; 2017 Aug; 7(1):8655. PubMed ID: 28819233 [TBL] [Abstract][Full Text] [Related]
28. Effects of livestock grazing on grasshopper abundance on a native rangeland in Montana. O'Neill KM; Olson BE; Wallander R; Rolston MG; Seibert CE Environ Entomol; 2010 Jun; 39(3):775-86. PubMed ID: 20550790 [TBL] [Abstract][Full Text] [Related]
29. Asynchrony, fragmentation, and scale determine benefits of landscape heterogeneity to mobile herbivores. Searle KR; Hobbs NT; Jaronski ST Oecologia; 2010 Jul; 163(3):815-24. PubMed ID: 20349246 [TBL] [Abstract][Full Text] [Related]
31. Feeding responses by adult males of Melanoplus sanguinipes (Fabricius) to carbohydrates and amino acids. Davis GR Arch Int Physiol Biochim; 1985 Sep; 93(3):215-22. PubMed ID: 2416288 [TBL] [Abstract][Full Text] [Related]
32. Parasitic flies alter the dietary preference of grasshoppers. Guan H; Zhang S; Yang N; Huangpu Y; Lan B; Nikas KJ; Wu X; Sun S Integr Zool; 2024 Jul; 19(4):743-752. PubMed ID: 37427453 [TBL] [Abstract][Full Text] [Related]
33. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield. Begna SH; Fielding DJ J Econ Entomol; 2005 Dec; 98(6):1969-76. PubMed ID: 16539121 [TBL] [Abstract][Full Text] [Related]
34. Growth, development, and nutritional physiology of grasshoppers from subarctic and temperate regions. Fielding DJ; Defoliart LS Physiol Biochem Zool; 2007; 80(6):607-18. PubMed ID: 17909997 [TBL] [Abstract][Full Text] [Related]
35. Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities. Pfisterer AB; Diemer M; Schmid B Oecologia; 2003 Apr; 135(2):234-41. PubMed ID: 12698345 [TBL] [Abstract][Full Text] [Related]
36. Penicillin-induced oxidative stress: effects on antioxidative response of midgut tissues in instars of Galleria mellonella. Büyükgüzel E; Kalender Y J Econ Entomol; 2007 Oct; 100(5):1533-41. PubMed ID: 17972630 [TBL] [Abstract][Full Text] [Related]
37. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Johnson RH; Lincoln DE Oecologia; 1990 Aug; 84(1):103-110. PubMed ID: 28312782 [TBL] [Abstract][Full Text] [Related]
38. The occurrence of inducible anti-Escherichia coli activity in hemolymph from the migratory grasshopper, Melanoplus sanguinipes. Gillespie JP; Koshinsky HA; Khachatourians GG Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Jan; 104(1):111-5. PubMed ID: 8097445 [TBL] [Abstract][Full Text] [Related]
39. Dietary diversification and variations in the number of labrum sensilla in grasshoppers: which came first? Zaim A; Petit D; ElGhadraoui L J Biosci; 2013 Jun; 38(2):339-49. PubMed ID: 23660669 [TBL] [Abstract][Full Text] [Related]
40. Non-absorption of ingested lipophilic and amphiphilic allelochemicals by generalist grasshoppers: the role of extractive ultrafiltration by the peritrophic envelope. Barbehenn RV Arch Insect Biochem Physiol; 1999 Oct; 42(2):130-7. PubMed ID: 10504206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]