BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 12757386)

  • 1. Nucleosides and nucleotides. 218. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides using a purine motif.
    Hoshika S; Ueno Y; Matsuda A
    Bioconjug Chem; 2003; 14(3):607-13. PubMed ID: 12757386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosides and nucleotides. Part 226: alternate-strand triple-helix formation by 3'-3'-linked oligodeoxynucleotides composed of asymmetrical sequences.
    Hoshika S; Ueno Y; Kamiya H; Matsuda A
    Bioorg Med Chem Lett; 2004 Jun; 14(12):3333-6. PubMed ID: 15149701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies.
    Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS
    Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps.
    Marchand C; Sun JS; Bailly C; Waring MJ; Garestier T; Hélène C
    Biochemistry; 1998 Sep; 37(38):13322-9. PubMed ID: 9748340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple helix forming TRIPside molecules that target mixed purine/pyrimidine DNA sequences.
    Li JS; Shikiya R; Marky LA; Gold B
    Biochemistry; 2004 Feb; 43(6):1440-8. PubMed ID: 14769020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of clustered 2'-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Miller PS; Seidman MM
    Biochemistry; 2004 Feb; 43(5):1343-51. PubMed ID: 14756571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzoquinazoline derivatives as substitutes for thymine in nucleic acid complexes. Use of fluorescence emission of benzo[g]quinazoline-2,4-(1H,3H)-dione in probing duplex and triplex formation.
    Godde F; Toulmé JJ; Moreau S
    Biochemistry; 1998 Sep; 37(39):13765-75. PubMed ID: 9753465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplex formation on DNA targets: how to choose the oligonucleotide.
    Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB
    Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides.
    Faucon B; Mergny JL; Héléne C
    Nucleic Acids Res; 1996 Aug; 24(16):3181-8. PubMed ID: 8774898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of linked triple helical DNAs possessing high affinity to triple helical DNA binding protein.
    Shibata A; Ueno Y; Shinbo K; Nakanishi M; Matsuda A; Kitade Y
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1410-3. PubMed ID: 16332436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA triplex structures are stabilized by the incorporation of 3'-endo blocked pyrimidine nucleosides in the Hoogsteen strand.
    Savy P; Benhida R; Fourrey JL; Maurisse R; Sun JS
    Bioorg Med Chem Lett; 2000 Oct; 10(20):2287-9. PubMed ID: 11055340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides.
    Kukreti S; Sun JS; Garestier T; Hélène C
    Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inability of RNA to form the i-motif: implications for triplex formation.
    Lacroix L; Mergny JL; Leroy JL; Hélène C
    Biochemistry; 1996 Jul; 35(26):8715-22. PubMed ID: 8679634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Hoogsteen and reversed-Hoogsteen duplex and triplex formation with tricyclo-DNA purine sequences.
    Renneberg D; Leumann CJ
    Chembiochem; 2004 Aug; 5(8):1114-8. PubMed ID: 15300836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of the third strand: differential effects on purine and pyrimidine triple helix formation.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Klump H; Mergny JL
    Biochemistry; 2002 Jan; 41(1):357-66. PubMed ID: 11772035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.